
Elimination of Negation in a Logical Framework

Alberto Momigliano

December 15, 2000
CMU-CS-00-175

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Prank Pfenning, Chair

Dana Scott
Dale Miller, Pennsylvania State University

This research was supported in part by the the National Science Foundation under grants CCR-9619584
and CCR-9988281 (Principal Investigator: Frank Pfenning). The views and conclusions contained in this
document are those of the the author and should not be interpreted as representing the official policies,
either expressed or implied, of NFS or the U.S. Goverment

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Copyright © 2000 Alberto Momigliano

20010307 023

Keywords: logical frameworks, higher-order logic programming, negation, negation-as-failure, strict A-
calculus, regular world assumption

Abstract

We address the issue of endowing a logical framework with a logically justified notion of negation. Logical
frameworks with a logic programming interpretation such as hereditary Harrop formulae cannot directly
express negative information, although negation is a useful specification tool. Since negation-as-failure does
not fit well in a logical framework, especially one endowed with hypothetical and parametric judgments, we
adapt the idea of elimination of negation from Horn logic to a fragment of higher-order hereditary Harrop
formulae. The idea is to replace occurrences of negative predicates with positive ones which are operationally
equivalent. This entails two separate phases.

Complementing terms, i.e. in our case higher-order patterns. Due the presence of partially applied lambda
terms, intuitionistic lambda calculi are not closed under complementation. We thus develop a strict lambda
calculus, where we can directly express whether a function depends on its argument.

Complementing clauses. This can be seen as a negation normal form procedure which is consistent with
intuitionistic provability. It entails finding a middle ground between the Closed World Assumption usually
associated with negation and the Open World Assumption typical of logical frameworks. As this is in
general not possible, we restrict ourselves to a fragment in which clause complementation is viable and that
has proven to be expressive enough for the practice of logical frameworks. The main technical idea is to
isolate a set of programs where static and dynamic clauses do not overlap.

Acknowledgements
This dissertation would not have been possible without the help and support of many different people.

First and foremost my thesis advisor, Frank Pfenning, who has guided me through every step of this research,
from the high level design decisions down to the most technical details. There is probably not a single line
that does not carry his imprint. Of course, any remaining mistake is solely my responsibility. In the process,
he has taught me a rigorous discipline and a style in approaching formal problems that has made me a far
better researcher and perhaps a better person, too.

I would also like to thank wholeheartedly the members of my dissertation committee, Dale Miller and
Dana Scott for their useful comments and encouragement.

I am also deeply grateful to Carsten Schürmann, who, under the motto "What do you want to prove
today?" has always been ready and willing to discuss a wide range of issues from from type-theory to the
practicalities of the Twelf system. I'm also indebted to Roberto Virga for many discussions and his precious
help in debugging the strict calculus rules. Thanks to Iliano Cervesato for his comments to an early version
of the material in Chapter 3 and for making available his manuscript [Cer].

I'd also like to thank Mario Ornaghi for his friendship and hospitality at DSI, Milan and the many
discussions on the essence of logic programming. Thanks also to Ugo Moscato for his support at DSI.

In the health department, I want to thanks from the deep of my heart Dr. Garfmkel, Dr. Velletri, Dr.
Oliva, Dr. Zigler, Jean Bender and the wonderful people at GAV.

I wouldn't have been able to survive all those years in Pittsburgh without the company of the local Italian
community and associates: Barbara and Jerry, Cristina and Massimo, Violetta and Ben, Cristina and Dude,
Ulrike and Massimo, Stefano and Kathy, Giovanna and Aldo. A particular thanks to Lena.

Finally, I want to thank my beloved Claudia, who has been waiting for me on the other part of the ocean,
so very patient and affectionate during those hard and long years of separation.

It is so sad that my mother is not here anymore to witness the happy conclusion of such a difficult
journey. All I can do is dedicate this dissertation to her memory.

Contents

Introduction 2
1.1 Logical Frameworks 3
1.2 Negation 3

1.2.1 What is Failure (in a Logical Framework)? 7
1.2.2 Which Logical Framework? 7

1.3 From Theorem Proving to Prolog 8
1.4 Negation-as-Failure 9
1.5 Extending Horn Logic 10

1.5.1 Constructive Negation 11
1.5.2 Non-Failure Driven Negation 12
1.5.3 Proof-Theoretic Approaches to Negation and NF 13
1.5.4 Outline 13

1.6 Contributions and Technical Acknowledgments 14

The Relative Complement Problem 15
2.1 The Not Algorithm 16
2.2 Disunification 17
2.3 Other Applications 19
2.4 Complementing Higher-Order Patterns 20
2.5 Partially Applied Terms 23

A Strict A-Calculus 25
3.1 Strict Types 25
3.2 The Canonical Form Theorem 37
3.3 Related Work on Strictness 44

The Relative Complement Problem for Higher-Order Patterns 47
4.1 Towards Term Complementation 47

4.1.1 Simple Terms 47
4.1.2 Full Application 52

4.2 The Complement Algorithm 55
4.3 Unification of Simple Terms 59
4.4 The Algebra of Strict Terms 65
4.5 Summary 67

Elimination of Negation in Clauses 69
5.1 The Completion 69
5.2 Introduction to HHF Complementation 71
5.3 Background 76
5.4 Motivation 77
5.5 Related Work 78

5.5.1 NF in Clausal Intuitionistic Logic 79

CONTENTS iii

5.5.2 NF and N-Prolog 79
5.5.3 NF in First-Order Uniform Proofs 80
5.5.4 Partial Inductive Definitions 80

Clause Complementation 84
6.1 The Logic 84

6.1.1 T-Normalization 87
6.2 Context Schemata 90

6.2.1 Schema Extraction 93
6.2.2 Context Preservation 98

6.3 Terminating Programs 101
6.4 Complementable Clauses 106

6.4.1 Normalization of Input Variables 109
6.5 The Clause Complement Algorithm 110
6.6 Augmentation 116
6.7 Exclusivity 124
6.8 Exhaustivity 132
6.9 Refinements 136

6.9.1 More on Termination 136
6.9.2 Elimination of V 137

6.10 Summary 140

Conclusions and Future Work 141
7.1 Lifting Restrictions 142

7.1.1 Parameters Restrictions 142
7.1.2 Extension to Any Order 143
7.1.3 Open Queries 144
7.1.4 Local Variables Revisited 144

7.2 Extensions 145
7.2.1 Beyond Patterns 145
7.2.2 Richer Type Theories 146
7.2.3 Predicate Quantification 146

7.3 Implementation Issues 147
7.4 Additional Topics 148

7.4.1 Higher-Order Program Algebra 148
7.4.2 Strict and Vacuous Variables 148

List of Figures

2.1 Some disunification rules 18
2.2 Computation of Vy : z ^ 0 A z ^ s{s(y)) 19
2.3 M is a fully applied pattern: T hE M f.a 21

3.1 Typing rules for X^ 26
3.2 First derivation of •; •; (x:A 4 A 4 B,y:A) h (xy1)y1 : B 27
3.3 Second derivation of -,-,(x:A 4 A 4 B,j/:A) h (xy1)y1 : B 27

3.4 Reduction rules for A-* 35
3.5 Canonical forms 38
3.6 Conversion to canonical form 38
3.7 The system in [BF93] 46

4.1 Full application translation: T \- M <—> N 52
4.2 Ground instance: T h M € ||iV|| : A 54
4.3 Not a ground instance: r h M £ ||JV|| : A 58

5.1 Synthesis of the predicate odd 70
5.2 Synthesis of the nonmember predicate 72

6.1 Provability and denial 85
6.2 Immediate entailment and denial 86
6.3 T-Normalization 89
6.4 Judgments r; V \ G < S, \=s D and V; V < S 92
6.5 Extracting contexts schemata 94
6.6 Generation of the subgoal relation 103
6.7 Complementable clause and goal: T;V\- D compl and T;V\- G compl 107
6.8 Clause, goal, assumption and term normalization Ill
6.9 Clause complementation: Noto(-D) = D' 112
6.10 Assumption complementation: T \- Nota(i?) = D' 113
6.11 Goal complementation: T h NotG(G) = G' 115
6.12 Clause augmentation: augD(D) — Da 116
6.13 Goal augmentation: T;V\- augG{G) = Ga 117
6.14 V-Elimination: £>i V D2\D 138

Chapter 1

Introduction

Suppose we are giving a formal definition of a programming language in the style of natural semantics
[Kah87]; after we have specified the abstract syntax, the type system (e : r) and a small step evaluation
semantics (e >-> e'), it is time to check their consistency via a proof of type soundness. We may start
by attempting the Progress lemma, which will eventually guarantee that well-typed expressions cannot go
wrong; in symbols, this could go like this: for every expressions e such that e : r and e is not a value,
there exists an expression e' such that e M- e'. Now, imagine that our language is fairly sophisticated
and our funding agency requires a machine-checkable verification of our results. Thus, we decide to use
an automated reasoning tool, possibly an interactive one. A proof of progress is a rather trivial structural
induction for a human, but in order to be machine checked, it needs to be spelled out in every detail. We
may have implemented judgments defining expressions, values, typing and evaluation: but what about the
notion of not being a value? We may try to reason in a strictly intuitionistic way and view -ivalue(e) as
the derivation of a contradiction J. from the assumption value{e). This is possible, but certainly not in the
spirit of the proof; -<value(e) is just a test, a way to sift out expressions that are already fully evaluated.
What we really need is a positive (inductive) definition of "not being a value", say nonvalue(e); indeed,
this should be possible, since non-values are exactly those expressions which are not values. Nevertheless,
manually coding this notion may be tedious and error-prone, especially considering evolution of our initial
specification. Moreover, we will also have the obligation of proving, at least to our satisfaction, that the
explicit definition of 'non-value' coincides with the negation of 'value'. Lacking this, our formal verification
cannot be entirely trusted.

For another example consider a simple instance of reasoning about process algebra, such as Peterson's
algorithm for mutual exclusion [Pet81]. The problem here is to ensure that two processes can never be
simultaneously in their critical section. A process can be in several (possibly many) states, such as sleeping,
trying, critical; a transition relation describes how the system moves from a state to another, according
to whether a process is allowed to change its status. Suppose we want to verify some property of the system
such as safety: for any possible sequence of transitions if the initial state is safe, so is the final one. Now,
from the description of the problem, it is apparent that a state is safe if both process are not in their critical
section. It would benefit the verification attempt to have a positive explicit specification of being a safe
state, rather than working with an implicit negative one. Not only the number of states can be fairly large,
but consider the natural extension of the same problem to n-processes: a hand-written positive specification
of a state being safe can be incomplete or plain wrong. Again, over time, the number of states will increase
or possibly decrease and the safety specification needs to evolve accordingly.

The bottom line is that negation is a very common connective in a specification - and rightly so, since it is
one of the most basic logic operators. Formalizations that use negation are often sharper and more concise.
Nevertheless, not every automated reasoning tool available nowadays is able to provide an appropriate
handling of this connective. This is particularly problematic for logical frameworks based on higher-order logic
or type-theory with a logic programming interpretation, such as Twelf [SP98] and AProlog [NM88, Mil89b].
While the latter provide a very advanced unified environment for the specification, implementation and
verification of deductive systems, they inherit the traditional problems with negation, which Prolog has

1.1. LOGICAL FRAMEWORKS

struggled with since its inception. These problems are further augmented by some of their more beneficial
features; namely by being 'higher-order' and being based on intuitionistic provability. Those characteristics
are the main key elements of the success of those frameworks and should be preserved under every extension.
This dissertation presents an approach to endow those languages with a logically sound notion of negation
without sacrifying any part of their representation power.

1.1 Logical Frameworks

A logical framework [PfeOOa] is a meta-language for the specification, implementation and verification of
deductive systems and their meta-theory. Deductive systems consist of axioms and rules defining derivable
judgments; they can be used to specify logics and aspects of programming languages such as operational
semantics, type systems, abstract machines and compilation.

Logical frameworks offer a bridge between the success of declarative programming languages (logic and
functional) and the unsatisfactory results of general theorem proving. There is perhaps a reasonable middle
way between Poincare's derision to the logicist approach:

"If you need twenty-seven equations to prove that 1 is a natural number, how many will you need
to prove a real theorem?"1.

and Wos' claim to have solved with OTTER real mathematical open questions (see [WM91] for a depressing
list).

Many logical framework have been proposed in the literature (see [PfeOOa] for an overview) and many
extensions are also under consideration. However, we must carefully balance the benefits that any proposed
extension can bring against the complications its meta-theory would incur. We have two main issues to
consider:

1. It is been argued that logical frameworks should be by design as weak as possible [dB91], in order to:

• Simplify proofs of adequacy of encodings.

• Allow effective checking of the validity of derivations.

• Reduce the complexity of proof-search.

• Inherit a treatable unification problem.

2. At the same time logical frameworks must provide powerful tools to support the design process of
deductive systems. Experience has shown that the strength of a logical framework is proportional to
the ease it makes encodings simple and concise. The more direct is the encoding, the easier is to reason
about it. One well known example is higher-order abstract syntax [PE88], which moves renaming and
substitution principles to the meta-language; this avoids the explicit programming and proving of a
large series of low-level results about those trivial but ubiquitous concepts. Another example is the
reification of derivations as proof terms in type-theoretic languages, which reduces run-time check for
correctness of derivations to type-checking in the meta-language.

The approach taken in the Twelf project is a "pay as you go" one. In other words, every extension is
carefully crafted so as to be conservative on the operational and declarative semantics of the core language.
Examples are the linear extension [CP96] or refinement types [Pfe93].

1.2 Negation

The aim of this thesis is to develop a framework for the synthesis of the negation of logic programs in logical
frameworks such as hereditary Harrop formulae (HHF) [MNPS91] and its implementation in AProlog [NM88].
We intend this to set the basis for type-theoretic frameworks such as LF [HHP93] and its implementation
Twelf [SP98] and possibly their linear refinement as Lolli [HM94] and LLF [CP96]. This approach could

'Les dernieres efforts des logiciens, in Science et Methode, p. 193.

1.2. NEGATION

also be useful for (inuitionistic) generic theorem proving systems, especially ones based on higher-order logic
or type theory such as Isabelle [Isa98] and Coq[DFH+93].

Those systems (Isabelle and Coq excluded) do not provide a primitive negation operator. Indeed, con-
structive logics usually implement negative information as ->A = A -> ±, where ± denotes absurdity and
the Duns Scoto Law is the elimination rule. Thus negative predicates have no special status; that would
correspond to explicitly coding negative information in a program, which is entirely consistent with the pro-
cedural interpretation of hypothetical judgments available in logical frameworks with a logic programming
interpretation. However, this would not only significantly complicate goal-oriented proof search (as it is
manifested in the difficulty of implementing, for example, the full logic of Forum [Mil94]), but providing
negative definitions seems to be particularly error-prone, repetitive and not particularly interesting; more
importantly, in a logical framework we have also to fulfill the proof obligation that the proposed negative
definition does behave as the complement (of its positive counterpart).

Providing a viable negation operator has an immediate practical relevance in programming in those
languages, since it relieves the user from the burden of explicitly encoding negative information in the form
of clauses which express the condition for a predicate not to hold. Automating the synthesis of negative
information has not only a clear benefit in the logic programming sense, but it may also have a rather
dramatic effect on the possibility of implementing deductive systems that would prove to be too unwieldy
to deal with otherwise. The synthesis of the negation of predicates such as typable, well-formed, canonical
form, subsort, value etc.-as well as Prolog-like predicates such as equality, set membership and the like-will
increase the amount of meta-theory that can be formalized.

Of course, the addition of negation does not change the recursion-theoretic expressive power of a language,
but we claim that it does make a difference at the representation level. To bring this to the extreme,
deductive systems can be expressed eventually in, say, first-order Horn logic and ideally proved-checked or
even demonstrated by a resolution theorem prover or more likely by an interactive one. In practice, this has
turned out to be very problematic, if not a total failure; hence the refinement of the tools to higher-order
logic and type-theory.

Traditionally, negation-as-failure (NF) [Cla78] has been the overwhelmingly used approach in logic pro-
gramming (see [AB94] for a recent survey): that is, infer ->A if every proof of A fails finitely. The operational
nature of this rule and its ultimately troublesome logical status is a serious threat to the logical frameworks'
endeavor. We will return on the topic of why NF is an absolutely inadequate way to address the issues of
negation in a such a framework in Section 1.4.

While the topic of negation has been pursued to the extreme in first-order logic programming (we shall
try a small review of closely related approaches in Section 1.3), the field is almost virgin as far as higher-
order logic and type theory is concerned: languages such as AProlog implement NF with the usual cut-fail
combination: a logical reconstruction for the first order fragment has been attempted, with somewhat
disappointing results, in Harland's thesis [Har91b].

Though the impetus of this enterprise may seem at first sight mainly pragmatic, it should not be under-
rated. In short, we are trying to design a reasonable notion of negation, a basic building block of any logic
under severe computational constraints:

"The problem is difficult because it seeks a notion of negation which is simultaneously semanti-
cally elegant and computationally feasible: in both execution and mathematical/logical semantics
the extended language should cleanly extend the definite clause language" [JLLM91].

The reason why NF is so popular in the logic programming paradigm is that it essentially requires no
modification to the search structure of an logic programming interpreter. The real question is whether it
also satisfies the other aforementioned criteria. Nonetheless this is just a part of it:

"... this notion [NF] is a basic logical notion, a notion of value to pure logic (as studied since
the Ancient Greeks) of equal importance and theoretical standing as notion like Possibility,
Deduction, Axiom and the like. The role of negation by failure in logic programming in only a
special case: one manifestation of its role in logic" [Gab91].

Our answer to this plea will be to show that, paradoxically, the best way to deal with negation in the
logic programming setting is to eliminate it through transformation.

1.2. NEGATION

It is a basic fact of classical prepositional logic that connectives are inter-definable; more precisely, a
sufficiently expressive set of sentential operators can provide, by definition, the missing ones, as an immediate
consequence of their truth-value semantics. It is therefore customary and economically convenient to assume
as primitive only this basis and define the others operators in terms of the former. In almost every definition
negation is taken as primitive, paired either with conjunction, disjunction or implication; even those more
succinct presentations based on a singleton connective as nand retain an implicit flavor of negation.

There is yet another way to address negation which is related to the transformational approach we are
interested in. This is known as negation normal form and it is used for example in Tait's concise proof
of cut-elimination for classical logic. For every atomic predicate symbol p we also have a symbol denoting
the opposite, say p. Then, with the essential usage of double negation elimination and De Morgan's laws,
negation is defined as follows:

def _
IP = p
_ def

IP = P
def

"p = p

iAAB) = -.AV-..B
def

n(AV5) = -.i4A-.fi

Thus, as far as the classical propositional structure is concerned, negation can be accomplished simply by
renaming. Consistency is then achieved by adding axioms that specifies that is it inconsistent to hold both
p and p, namely p <-> ->p an ->p <-> p.

This is another way to look at the approach to negation that we shall investigate, that is the trans-
formational one, also known as intensional negation, initiated in [ST84] and developed in Pisa for Horn
logic [BMPT87, BMPT90, BLLM94]. Roughly, given a clause with occurrences of negated predicates, say
Q «- G,-<P,G', where P is an already defined atom, the aim is to derive a positive predicate, say non.P,
which implements the complement of P, preserving operational equivalence; then, it is merely a question of
replacement, yielding the negation-less clause Q <- G,non.P,G'. This has the neat effect that negation and
its problems are eliminated, i.e. we avoid any extension to the (meta) language. Technically, we can achieve
this by transforming a the body of the iff-completion [Cla78] of a Horn program into negation normal form
and then by negating atoms via complementing terms, a problem first addressed in [LM87] for first-order
terms. To mention the simplest example possible, suppose we have a procedure p that calls somewhere a
check for a number not to be even, where the latter is already defined:

p(X) <- ... -ieven(X)...

even(0).
even(s(s(Y))) «- even(Y).

The goal is to obtain a definition for p, where the negative occurrence of even(X) is replaced by a positive
call to its complement, say non_even(X). This involves the synthesis of the non.even predicate from its
positive definition:

p(X) ■<—... non.even(X)...

non-even(s(0)).
non.even(s(s(Y))) <- non.even{Y).

Thus where is our contribution? The problem is that this does not carry immediately over to every
computational logics, where the notion of negation normal form may be in itself problematic. The issue
was not apparent in the existing literature because of the identification of logic programming with Horn
programming. For accident or necessity (though we now lean for the former) Horn logic imposed itself as the
format in logic programming. Because of its restricted syntax classical and intuitionistic provability coincide
in this fragment. This entails that classical equivalences preserve the intended operational semantics of the
source program. Thus negation normal forms do work here, as we explain in Chapter 5

Nevertheless, this approach does not scale immediately to more expressive languages. Once we go beyond
Horn logic, the intuitionistic (or 'search-like') interpretation becomes crucial to ensure the existence of what

1.2. NEGATION

is commonly agreed as a reasonable interpreter for a logic programming language. Our endeavor can be
paraphrased as the search for a notion of negation normal form for a significantly fragment of higher-order
intuitionistic logic which is compatible with a logic programming interpretation.

It must be remarked that the issue of negation in constructivism is by no means new, but it has been
considered by many problematic. One sticky point lies in the Heyting semantics of ->A, seen as a short for
A -» _L; many have expressed doubts about the epistemological status of a construction which yields the
absurdum. A discussion can be found in Wansing's monography [Wan93]. Already in its textbook [Hey56]
Heyting mentions Griss' attempt to formalize a notion of negation-less mathematics. The most well-known
approach to marry a first-class notion of negation with constructivism is Nelson's strong negation [Nel49].
As we will argue in Section 5.3, the interaction between strong negation and implication is inadequate to
support the operational interpretation of HHF we are interested in.

Additionally, elimination of negation does not scale immediately to logical frameworks such as HHF, for
two other reasons:

1. The simply-typed A-calculus is not closed under term complement.

2. There is an intrinsic tension between the Closed World Assumption (CWA) [Rei78], which is asso-
ciated with negation, and the Open World Assumption (OWA) typical of languages with embedded
implication.

Differently from the first-order case, the complement of a lambda term cannot, in general, be described by
a pattern, or even by a finite set of patterns. We can isolate one basic difficulty: a pattern such as Xx. E x
for an existential variable E matches any term of appropriate type, while As. E matches precisely those
terms Xx. M where M does not depend on x. The complement then consists of all terms Xx. M such that M
does depend on x. However, this set cannot be described by a pattern, or even a finite set of patterns. This
formulation of the problem suggests that we should consider a calculus with an internal notion of strictness
so that we can directly express that a term must depend on a given variable. We will therefore introduce a
strict A-calculus where term complement in the simply typed A-calculus can be embedded and performed.

The second issue is. rooted again in the fundamental difference between Horn and HHF formulae: as
well known, a Horn predicate definition can be seen as an inductive definition of the same predicate. The
minimality condition of inductive definitions excludes anything else which is not allowed by the base and step
case(s). This corresponds in Horn logic to the existence of the least model and to the consistency of the CWA
and its unitary approximation, the completion of a program [Cla78]: every atom which is not provable from a
program is assumed to be false. Languages which provide embedded implication and universal quantification
are instead open-ended and thus require the OWA; in fact, dynamic assumptions may, at run-time, extend
the current signature and program in a totally unpredictable way. This makes it in general impossible to
talk about the closure of such a program. In the literature (reviewed in detail in Section 5.5) the issue has
been addressed in essentially three ways:

1. By enforcing a strict distinction between CWA and OWA predicates and applying NF only to the
former [Har91b], where the latter would require minimal negation, as in [Mom92].

2. By switching to a modal logic, which is able to take into account arbitrary extensions of the program as
possible worlds (see the completion construction in [G098] for N-Prolog and [Bon94] for Hypothetical
Datalog).

3. By embracing the idea of partiality in inductive definitions and using the rule of definitional reflection
to incorporate a proof-theoretical notion of closure analogous to the completion [SH93, MM97].

None of those approaches are satisfactory for our purposes: most of the predicates we want to negate
are open-ended; similarly, definitional reflection is not well-behaved (for example cut is not eliminable) for
that very class of programs we are interested in. Moreover, we need to express the negation of a predicate
in the same language where the predicate is formulated. Our solution is to restrict the set of programs
we deem deniable in a novel way, so as to enforce a Regular Word Assumption (RWA): we define a class of
programs whose dynamic assumptions extend the current database in a specific regular way. This constitutes
a reasonable middle ground between the CWA which allows no dynamic assumption but is amenable to

1.2. NEGATION

negation and the OWA, where assumptions are totally unpredictable. The RWA is also a promising tool
in the study of the meta-logical frameworks [SchOO]. Technically, this regularity under dynamic extension
is calibrated so as to ensure that static and dynamic clauses never overlap. This property extends to the
negative program; in a sense, we maintain a distinction between static and dynamic information, but at a
much finer level, i.e. inside the definition of a predicate. The resulting fragment is very rich, as it captures
the essence of the usage of hypothetical and parametric judgments in a logical framework; namely, that they
are intrinsically combined to represent scoping constructs in the object language. This is why we contend
that this class of programs is adequate for the practice of logical frameworks.

1.2.1 What is Failure (in a Logical Framework)?

A minimal requirement for a negation operator '->' is that if a set of assumption T is consistent, it is
the case that r h A iff not T I >A. It is a key issue how to interpret the notion of non-existence of a
proof. In the logic programming tradition this has been identified with the idea of finite failure: the logic
programming interpreter is run by querying a given program V with a goal G; the halting of the query
without a derivation is evidence enough to assert the negation of G. This idea actually traces back to
the same principle in the deductive database context, where the decision problem has a positive answer.
Indeed, in this setting, the Closed World Assumption is a most natural one, since, given the large number
of entries in a database, the only reasonable way to encode negation is by absence. The transfer of this idea
to full logic programming [She85] has been not exactly worry-free, as the enormous literature on the subject
testifies. Luckily, our requirements are somewhat different from general logic programming; in fact, in a
logical framework, negation refers not to finite failure but to unprovability tout court, as we refrain from
negating programs whose negation is not recursively axiomatizable: the adequacy of the representation will
break down, since there would be functions which cannot be captured by the framework. We will therefore
deal only with terminating programs; this is why we identify negation with a complement operation. This
restriction, far from being an easy way out, gives us the additional burden to prove that termination is
preserved under every manipulation of programs.

It is clear that elimination of negation makes sense only when negation is stratified [ABW88], i.e. the
negative predicates ultimately refers (in the call graph) to a positive one. We will informally adopt the
generally accepted weaker notion of local stratification [AB94], when the positive dependency relies not
simply on predicate names, but on ground instantiations of literals. While there may be a place in logic
programming for non-stratified negation, as the emerging answer set programming paradigm [Lif99] testifies,
the latter seems to be circumscribed to solving mainly combinatorial problems. This does not seem to be a
concern for a logical framework.

1.2.2 Which Logical Framework?

In this dissertation we work with the pattern fragment of third-order HHF; thus our results apply to the
same fragment of L\ [Mil91], although every design decision has been influenced by the possibility to extend
it to the richer language of LF and to its implementation in Twelf. We comment on this in the conclusions
(Chapter 7). Twelf can be seen as a dependently-typed CLP-oriented enhancement of L\. Both share
unification restricted to the pattern fragment, as well as the lack of predicate quantification. For convenience
reasons we take the liberty of decorating HHF clauses with labels that can be thought of as names. This
allows us to be more concise when applying program transformations. Even though they resemble the same
notation in Twelf, they lack any intrinsic meaning and will not be used as proof-terms.

Furthermore, we restrict ourselves to HHF without local variables. If we look in the usual logic program-
ming fashion at an implicational clause as a rule where the consequent is the 'head' and the antecedent the
'body', a local variable is an essentially existential one which occurs in the body but not in the head. This
restriction is customary in the literature on elimination of negation [ST84, MPRT90a]. For example the
following clause for typing application cannot be allowed, in this format.

1.3. FROM THEOREM PROVING TO PROLOG

ofapp : VEuE2:exp.VTi,T2:tp.

of (app JSi E2) T2

<- of Ex {arrow Tj T2)

*-of E2T1.

The problem is that Horn clauses with local variables are already not closed under complementation; in
fact, elimination of negation will transform those into extensionally universally quantified variables. It is
a whole new topic to give an operational reading of universal quantification in this setting and to mingle
it with parametric judgments. It is our feeling that the issue of local variables during complementation
does not have a simple general solution. Approaches which embrace the extensional nature of universal
quantification brought in by the negation of existential quantifiers [BMPT90, ABT90] are not satisfactory
and robust enough to carry over to logical frameworks with intensional universal quantification, except when
dealing with finite domains.

While it is well-known that every computable function can be expressed by a Horn programs without
local variables, we cannot hide that this is a somewhat severe restriction. We offer some ideas on how to
partially overcome it in the conclusion (Subsection 7.1.4).

1.3 From Theorem Proving to Prolog

A legitimate question is to ask is why logic programming does not have a primitive notion of negation. To
understand that, we need to say something on how logic programming and Prolog developed. This enterprise
has a rather peculiar parabola; logic programming owes its (relative) success to the way it limits and directs
generic theorem proving; from then on, ironically, most of the effort has been to extend its boundaries
without falling back onto full clausal logic.

Automatic theorem proving, or at least the intuition (and the dream), can be dated back to Leibniz,
but become more of a reality in 1965 when Robinson introduced the resolution principle [Rob65]. Briefly, it
is a proof procedure which proceeds by contradiction, converting a sentence to clausal form and testing for
inconsistency with a version of Gentzen's cut-rule augmented with unification. Yet, this approach has been
shown to be in general in-practical. A great deal of research developed after Robinson's breakthrough aimed
at restricting the search space, while preserving completeness. This is not the place to give even a short
account of these studies: we just sketch those that led to the basis of Prolog as we know it; for references
and a chronology see [Apt90]. When building a refutation there are basically two sources of choice:

1. Deciding which clauses to pick as parent clauses.

2. Deciding which literals in those clauses are to be resolved away.

One way to support the first restriction is linear resolution, independently proposed by Loveland and Luckam
in 1970, which by fixing one goal at each step, never needs to resolve two input clauses together. As far as
the second point is concerned, we may decide, after Hill, Kowalski and Kuehner, to fix the literal to resolve
in the center clause ('linear resolution with selection function'). Though we have narrowed the search space
considerably, there is still a fair amount of choice, namely conjunctive choice in the side clauses, ancestors
tracking and factoring. The winning strategy is to restrict the syntax of the clauses themselves; the choice
fell on Horn clauses: definite clauses (that is clauses with exactly one positive literal) are interpreted as input
ones, while Horn clauses with empty positive part are taken as goals. Eventually we have arrived at pure
Prolog or SXD-resolution.

What has SX.D-resolution to do with programming? The answer can be found in the so-called procedural
interpretation of Horn logic. Although the origins of Prolog are shrouded in mystery, it is known that in
1972 both Kowalski and Colmerauer came up with the idea that (a subset of) logic could be used as a
programming language. A definite clause A «- Bi, B2, ■ ■ ■, Bn can be viewed as a definition of an Algol-like
procedure:

1.4. NEGATION-AS-FAILURE

procedure A

begin

call B\

call B2

call Bn

end

Goal invocation corresponds to procedure invocation, and the ordering of the goals in the body of the invoked
clause corresponds to sequencing of statements. In logic programs data manipulation is entirely achieved
by means of unification, which encompasses parameter passing, multiple assignment, record allocation, data
construction and selection.

In spite of its limits, it can be shown that Horn logic has the same computational power of every other
programming language [Apt90]. Moreover, Horn logic has some nice model-theoretic properties, namely the
minimum model property; it is natural to consider the latter as the declarative meaning or the intended
interpretation of a program. Therefore it has been argued that we should be content with Horn logic, which
seems to be a complete and reasonably efficient computational logic. However, many have been dissatisfied
with the difficulty to express even the easiest logical problems in a language that lacks (explicit) disjunction
and negation. We share this complaint up to a certain point. We maintain the logic programming works as
far as the logical and the algorithmic parts do not differ too much, and that Kowalski's motto "Programs
= Logic + Control" has shown its intrinsic limitations. Yet, we strongly share the idea that especially from
a programming point of view it would be advisable to have the possibility of performing negative queries
and overall to have a negation operator in the body of clauses instead of simulating it with extra-logical
constructions, which make programs less understandable and declarative. It is not a question of expressive
power, it is a matter of style and convenience.

There are three ways, in order of increasing complexity, to add negation to Horn logic:

• Negative atomic queries.

• Negative literals in clauses bodies.

• Negative heads.

It is not possible to try to review all the proposed extensions; historically much of the attention has been
concentrated on incorporating NF; from that, most of first-order expressivity is recovered [LT84].

1.4 Negation-as-Failure

Since negative information is independent from definite programs, a specialized inference rule must be
invoked: negation as failure (NF), which in logic programming, originated from the confluence of two
quite different trends of research: the refinements of resolution based automatic proof procedures and the
relational approach to databases. For a nice introduction see [She88, AB94]. The idea of a proof under the
NF rule is a natural one: suppose you have a set of axioms and some kind of inference mechanism which
produces a recursively enumerable set of theorems, and that you are asked to verify the truth of a negative
conjecture ->C under NF; then you try to prove C from your theory; if you succeed, then ->C does not hold,
while if you realize (in a finite time) that C is not provable, then you are entitled to assert that ->C holds.
Its basic idea is to state that a goal is false if we are able to prove that it cannot be proved by the program.
Actually, NF is more a computational than a logical notion; we answer 'no' to a goal because our attempt
to say 'yes' failed, so we say 'no' because we cannot say 'yes;. Differently from other kind of negation, NF
"... does not follow from some constructive knowledge, but from lack of knowledge" ([Gab91] pp. 8). That
motivates its intrinsic non-monotonicity: in fact, in dynamic databases every enlargement may cause the
meaning of failure to change and so turn success into failure.

In logic programming, NF works this way:

1.5. EXTENDING HORN LOGIC 10

"... The basic idea is to use SXD-resolution augmented by the NF rule. When a positive literal
is selected, we use essentially SL£>-derivation to derive a new goal. However, when a ground
negative literal is selected, the goal answering process is entered recursively in order to try to
establish the negative subgoal ... Having selected ground negative literal ->A in some goal, an
attempt is made to construct a finitely failed SLDNF tree with root«- A before continuing with
the remainder of the computation. If such a tree is constructed, then the subgoal ->A succeeds.
Otherwise, if a SLDNF-xehit&tion is found for ->A, then the subgoal fails ..." ([Llo93] p. 87).

The operational nature of this rule motivates the lack of a unique semantics and some of its related trou-
blesome features: to begin with, possible unsoundness: without run-time checks on the substitution returned
by a negative open query, the final answer substitution may not be a logical consequence of the program.
This is the so-called "floundering" phenomenon, the undecidable question of whether the computation will
reach a negative open query and abort. Soundness is preserved only for ground queries; the flip side of the
medal is that now negation is not a first-class connective, but just a test that cannot return substitutions.
We review in Section 1.5.1 how and with what computational cost this can be avoided. And of course, NF
is in general incomplete in general logic programming.

All of the above makes NF a suspicious candidate for a negation operator in any logic programming
language, but the situation is even worse in logical frameworks. Even if we manage to isolate a well-behaved
logical fragment, such as acyclic normal programs [AB90], allowing NF in a logical framework carries some
additional problems. First, the meta-theory becomes really unwieldy, as both provability and unprovability
must now be taken into account. The two systems would be interlinked by rules such as:

T.\/F rhF
R+ <-R-

T\-->F ry-iF

where 1/ denotes a proof system for finite failure. In a type-theoretic logical frameworkthis issue is further
exacerbated by the need to deliver evidence of what a proof of a certain judgment is. The most popular way,
since the Automath project [dB80], is to to see derivations as lambda terms inhabiting judgments seen as
types. Although it is in principle possible to associate proof-terms to a derivation by negation-as-failure -'
this is implicit in the denial proof system that we present in Chapter 6, Figure 6.1 and 6.2 - the existence of
(unique) canonical forms is in general impossible to achieve; and this is pretty much a death sentence for NF.
In fact, in frameworks with hypothetical judgments, as recognized first by Gabbay [Gab85], the unrestricted
combination of NF and embedded implication is particularly problematic, since it leads to the failure of
basic logic principles such as cut-elimination. We discuss this issue in details in Section 5.5.

At the user level, the presence of NF in a logical framework would make adequacy theorems more difficult
to establish, again because both provability and unprovability now need to be considered.

In summary the adoption of NF in a logical framework seems to be a very risky, if not hopeless road,
considering its fragility already in the very simple setting of Horn clauses.

1.5 Extending Horn Logic

As previously mentioned, once Horn logic was isolated as the core of a programming language, a fairly
disorderly race was off to get more mileage out of Prolog. To sum up, we can isolate several (slightly
overlapping) positions:

• The "tories": for model-theoretic reasons, Horn logic is the best possible world, see the manifest "Why
Horn logic matters in computer science" [Mak87].

• The "realists", guided by Apt: logic programming is Horn logic with NF : what's left to do is logicize
the impure features of Prolog.

• The "Making Prolog more expressive" people: divided in two main intertwined sub-tribes: the "lo-
gicians", which claim that programming in Horn logic is like living with one hand tied behind your
back, and the "compilers" (see Sato and Tamaki. [TS84]: those come from the specification approach

1.5. EXTENDING HORN LOGIC 11

and look at Horn logic as a implementation language which is the target of a long and tiresome travel
through derivation and/or transformations from first-order logic. For the logicians, it is a must to con-
quer any piece of land outside Horn logic, say by adding connectives [PG86], pre-compilation [LT84],
change of interpreters (say connection graphs [GR87]) or, more reasonably, switching from classical
logic to fragments in the intuitionistic galaxy, reviewed in Section 5.5.

• Finally, there is the proof-theoretic approach of uniform proofs: new connectives are allowed only if
we can ascribe a clear meaning in term of search and provide a way of endowing logic programming
in a purely logical way with features such as modules, data abstraction and scoping typical of other
mature languages.

We now concentrate on how recent research has tried to address some of the problems connected with
NF.

1.5.1 Constructive Negation

Constructive Negation is an attempt to devise methods capable to provide logically justified answers to
non-ground negative queries, in analogy with the witnessing property of constructive logics. Formally, for
a suitable derivability relation, this property ensures that from h 3x~>p(x) we can infer the existence of a
term t.such that I—>p(t). We can roughly distinguish two approaches:

i. Program Transformation: [ST84], [FRTW88], [BMPT90].

ii. Negation by Constraints: [Wal87] for Datalog programs, [Cha88] [Cha89] and extended to CLP in
[Stu95]; Fail Substitutions: [She89] [MN89].

Historically, the original attempt to deal with the issue was simply to try avoiding the floundering
phenomenon: given that the latter is in general undecidable, one possibility is to try to make sure that when
a negative literal is called it has already been grounded: there are basically three possibilities:

1. Satisfy the syntactic, though very restrictive, conditions on allowed computations [She85], which es-
sentially reduces evaluation to ground evaluation.

2. Try to achieve grounding by delaying as in [MJNU-Prolog [Nai86] or Sicstus [AAB+95], where a goal
may be declared to be "frozen" and is evaluated only when it reaches a sufficient degree of instantiation.
This is obviously only a partial solution, since at run-time there is no guarantee to eventually ground
the problematic query. A more complex and historically less successful alternative is offered by the
computation rules of IC-Prolog, which allow the computation of negative open queries if their positive
counterpart does not bound any variable (see [Nai86], for a comprehensive analysis and references).

3. Covering the open negative query with a generator of values for the relevant variables. This is further
detailed next.

Static Approaches

If we are dealing with Datalog programs, i.e. with finite Herbrand Universe {Up), the naive approach would
be to instantiate all the rules with potentially troublesome goal with terms from Up [ABW88], say through
propagation in every negative literal in the program. This is clearly infeasible, since it may result in an
intractable numbers of rules, especially in an untyped setting.

A sophistication of this idea can be found in [FRTW88]: the proposal is to automatically infer a 'type'
for the problematic variables and transform the original program into one where grounding is ensured by
coverage from those types. Then useless answers originating from general instantiation would be excluded
by the typing discipline. Although it can be shown that the new program is equivalent to the old one, this
cannot be extended to full Prolog: function symbols make the type infinite and non-ground facts would
undermine the instantiation capability of the type.

Finally, the transformation approach falls in this category and is detailed in Chapter 5.

1.5. EXTENDING HORN LOGIC 12

Dynamic Approaches

Chan [Cha88] is acknowledged to be the inventor of the term 'constructive' negation in this area; his approach
can be roughly characterized as mixing NF with a constraints-solving attitude. In essence it consists in
evaluating a negative goal by executing its positive version and by negating the answer obtained. As in the
CLP family of languages, unification and disunification are kept explicit and returned as solutions. Of course,
we need to keep the (in) equalities in normal form and there are some obvious problems when dealing with
computations that have infinite answers; those are addressed in a following paper ([Cha89]), by quantifying
over the answer substitutions. No proof of completeness is offered. We can offer the following rational
reconstruction: the key observation is that if G is a goal and we consider the answer substitutions 0\,..., 6n as
equations, G <-> 3(#i V.. .V#n) is a logical consequence of the completed database. Therefore the constructive
negation rule is simply ->G «-> ~>V{6i V... V0„), where the right-hand side can be simplified by disunification.
For instance given the query not{even{X)), its positive version yields the answer X = 0V3Y : X = s(s(Y)),
whose negation is X ^ 0 A VY : X ^ s(s(Y')): its solved form is hence X — s(0), which we can regard as a
more informative refinement of the answer constructive negation produces.

A generalization to constraint logic programming over arbitrary structures is given in [Stu95]; it turns
out to be sound and complete w.r.t. the three-valued models of the completion. Other development of
constructive negation are addressed in [Fag97].

(E)SLDNF - S ([She89]) The finite failure case in the definition of SZ/£>JVF-resolution is modified as
follows: a goal (r, ->A) has a descendent OF, if there is a finitely failed-tree for 6A, where dom(9) € FV(A).
So NF can instantiate under success, i.e. negative goals may directly return substitutions: given P and G
the aim is to look for a (fail) substitution 6 such that P h- 6G has a finitely failed tree; then by the soundness
of the NF rule V0->G is a consequence of comp(P) and thus 6 is an answer substitution for the query ->G.
This seems very costly, since it entails enumerating (guessing) every fail substitution. I am not aware of any
implementation of this proposal.

This is refined in [MN89], where it is shown how to avoid to generate all possible substitutions in lieu
of a maximal general fail substitution. Moreover, the improvement w.r.t. Chan's work lies in the feature of
always including some positive bindings for the variable in the negated goal. If the SLD-tree is infinite, the
method enumerates the set of fail substitutions; this corresponds to the fact that in general negative queries
cannot be represented by finite positive information alone (connected to [LM87]).

1.5.2 Non-Failure Driven Negation

During the years ways of incorporating other more logical forms of negation than NF have appeared. Since
most of the time this gives back full non clausal-logic, most of them are cataloged as automated theorem
provers. In all these accounts, negative information has to be provided explicitly and specific rules are offered
to deal with that. Sometimes it is possible to mix "open world" and "closed world" predicates safely. For a
more detailed account and bibliography, let me refer to [Mom92].

• N(Q)Prolog [GR84], a complete implementation of positive intuitionistic logic. By defining disjunction
classically and allowing a restart rule (see nH Prolog next), Gabbay shows it to be complete for full
classical logic as well.

• Negation as Inconsistency ([GS86]). Here we evaluate a query against an ordered pair (P, iV), where P
is a Horn program and N a set of queries that are required not to succeed; this is logically equivalent
to adding to the program the negation of all the members of N, and permits importing negative facts
and rules. Both systems have a very awkward first-order version.

• Stickel's PTTP, supplements SLD-resolution with the model elimination rule. This entails keeping
track of the ancestors of the goal, loosing one of the key feature of Prolog, namely input resolution.

• Loveland's nH Prolog [RL92] incorporates case analysis in 5X£>-resolution, by demanding the invo-
cation of a restart rule for every disjunctive head, until the stack of the former. Without requiring
contrapositives (as in PTTP), it simulates case analysis with different runs of essentially the Pro-
log engine. Unfortunately naive nH-Prolog is incomplete and the new versions (Progressive nH and
Inheritance nH) have a less natural and convincing description.

1.5. EXTENDING HORN LOGIC 13

• Another extension goes under the name of disjunctive logic programming (see [LMR92] and references
therein). It aims to deal with full clausal logic by generalizing Horn clauses to disjunctive heads.

1.5.3 Proof-Theoretic Approaches to Negation and NF

In the 90's there has been an attempt to tie LP to proof-theory, where it belongs: and this has brought new
insights, particularly on NF.

The first step is to view Horn clauses positively as rules and goals as existentially closed conjunctions
of atoms to be proved by the former. Historically this can probably be dated back to Gabbay and Reyle
[GR84]. It is customary [HSH90] to distinguish among two approaches:

1. Clauses as axioms (programs as theories) and some form of Gentzen sequent calculus to infer goals,
i.e. uniform proofs systems.

2. Clauses as rules [HSH90]: Horn (and beyond) programs should be seen as set of inference rules for the
derivation of (not necessarily ground) atoms.

This has the following relation with negation:

1. Minimal, intuitionistic and classical negation can be superimposed over uniform proofs [Mil89c], [Har91a]
[Mom92]: Minimal negation, being camouflaged implication, is executed through the AUGMENT and
backchain operations; the evaluation of ->D consists in the assumption of D and in the attempt to prove
± from the enlarged theory. The Duns Scoto Law and Reductio ad Absurdum for atoms formalize the
latter, preserving the feature of abstract logic programming languages [MNPS91].

2. GCLA [MAK91] is based on the rule-based definitional approach to logic programming: it has in-
tuitionistic negation built-in, applying the definiens operator to the left-hand side of a sequent. A
discussion can be found in Section 5.5.4.

Stärk [Stä92] has given a sequent calculus reconstruction of NF using Clark's equality and freeness axioms,
negation (switch) rule and cut rules. Much more is however contained in Stärk's thesis and subsequent
research, although not directly applicable to our goals; to quote a few, he shows that a sequent is provable
in this calculus iff it is true in all 3-valued model of the completion. Furthermore a completeness result is
proved w.r.t 5L.DA^F-resolution for program satisfying the cut-property.

1.5.4 Outline

This dissertation is organized in two main parts which address:

• The relative complement problem for higher-order patterns.

• Clause complementation for a fragment of third-order Hereditary Harrop formulae.

We start in Chapter 2 by introducing the relative complement problem; we review the existing solutions
to the first-order case in the literature, namely a variant of Lassez & Marriot's original uncover algorithm
[LM87] (Section 2.1) and disunification [Com91] (Section 2.2). We then discuss in Section 2.4 the problems
connected to extending those idea to the higher-order case, where we notice the fundamental difference
between fully and partially applied terms. For the latter fragment, the simply-typed A calculus is not closed
under term complement. We remedy this by introducing the strict A-calculus in Chapter 3. We develop
the system and mention the existence of canonical forms. Once we have a calculus strong enough to deal
with partially applied terms, Section 4.1 introduces a restriction of the language ("simple terms") for which
complementation is possible. The algorithm for negation is presented in Section 4.2; in Section 4.3 we give
a unification algorithm for the same fragment. This completes our solution to the relative complement
problems for higher-order patterns. We conclude this chapter in Section 4.4 by showing how to organize
finite sets of simple terms into a boolean algebra. We end up this part of the dissertation reviewing related
work on strictness (Section 3.3).

1.6. CONTRIBUTIONS AND TECHNICAL ACKNOWLEDGMENTS 14

Chapter 5 sets the stage for clause complementation. First, in Section 5.1, we offer a reconstruction of
the transformational approach to negation in the Horn case. Then in Section 5.2 and 5.3 we give an informal
view of the complement algorithm for HHF and of the restrictions it requires by means of examples. In
Section 5.4 we try to motivate the pragmatic adequacy of the fragment of HHF we deal with, while Section
5.5 reviews the state of the art in NF and intuitionistic provability.

Chapter 6 is the heart of the thesis; we first introduce the source language and its uniform proofs system
in Section 6.1. We then establish the fundamental notion of context schema (Section 6.2). This allows to
enforce the Regular World Assumption (RWA), on which clause complementation is built. After formalizing
the restriction to terminating programs in Section 6.3, we present the clause complementation algorithm and
the related notion of augmentation (Section 6.5 and 6.6). We then prove the main theorem (Section 6.7 and
6.8). Finally, Section 6.9 discusses how to give an operational semantics to our language.

We conclude the dissertation in Chapter 7 by discussing first how to lift some of the current restrictions
(Section 7.1); then we address possible extensions, implementation issues and further future work (Section
7.2, 7.3 and 7.4).

1.6 Contributions and Technical Acknowledgments

The original contribution of the thesis are:

• A relative complement algorithm for higher-order patterns internalized into a strict type theory.

• A complement algorithm for a useful class of third-order hereditary Harrop formulae.

We contend that our approach is the first one to give a realistic analysis of negation in logical frameworks
with an emphasis on the development of a practical tool to incorporate this operator in existing languages.

This work has benefited enormously from the large ensemble of research collected in the Elf and offspring
projects: not only form the existence of this language and environment, but also from specific contributions
which we have used (in a somewhat simplified setting) in this thesis. Let me mention only the most recent
ones: schema contexts (Schürmann [SchOO]), linear unification (Cervesato and Pfenning [CP96]), subordina-
tion (Virga [Vir99]), mode and termination analysis (Rohwedder and Pfenning [RP96]).

This research has been financially supported for seven semesters by the Department of Philosophy at
CMU and by a one-year scholarship from "Consiglio Nazionale delle Ricerche", Italy.

Chapter 2

The Relative Complement Problem

An open term t in a given signature can be seen as the intensional representation of the set of its ground
instances, say \\t\\. According to this interpretation, the complement of t is the set of ground terms which are
not instances oft, i.e. are in the set-theoretic complement of ||i||. It is natural to generalize this to the notion
of relative complement; this corresponds to computing a suitable representation of all the ground instances
of a given (finite) set of terms which are not instances of another given one, in symbols:

||/i,...,<„|| - ||ui,...,um||

where dots represent (set theoretic) union1. More properly:

n

ii'i.---.u = Uii'''ii

Let FV(ti,...,tn) = x disjoint from FV(u\,...,um) = y. Then the relative complement problem can
be also expressed by the following (restricted) form of equational problem [Com91], where the Zj's are free
variables.

n m

3xiy : f\ zt = ti A f\ Zi ^ Ui
i = l t=l

Example 2.1 Consider the signature containing the usual declarations for 0, s, +. The following rules define
integer addition modulo 2.

s(s(0)) —► 0

2/ + 0 i—> y

0 + y i—> y

y + y i—> 0

The following relative complement problem expresses the question of sufficient completeness (in this case
yielding a positive answer) of the rewrite rules:

||*i + Z2II - ||s(*(0)),0 + y,y + 0,y + y\\

which corresponds to:

3xlX2\/y :(z = X!+ x2) A (z jt s(*(0))) A (z ^ y + 0) A (z ? 0 + y) A (z ^ y + y)

Then, since a variable stands for the universe of discourse, a complement problem is representable merely
by:
 INI- l|wi,---,Um||

another equivalent notation found in the literature is t\ V ■ ■ ■ V tn \ u\ V • • ■ V um [LM87], or a mixture of the two.

2.1. THE NOT ALGORITHM 16

or a simpler (3-degenerate) equational problem:

m

i=l

Now we turn to review solutions to the relative complement problem in first-order languages.

2.1 The Not Algorithm

We start with the 'Not' algorithm for first-order terms that specializes the prototypical uncover algorithm
proposed in [LM87] as a first attempt to solve the the problem and is at the heart of Barbuti et al.'s approach
[BMPT90]. We present it in a many-sorted framework, differently from the uni-sorted original version. We
call (in this chapter) a term linear if it does not contain repeated occurrences of a free variable.

Definition 2.2 Consider a many-sorted signature £ and a linear term t of type r. We define Not(t) by
structural induction/ where we suppose that ti has sort T{ and the z's are new free variables of appropriate
typing:

Not(z : r) = 0
Not(/(Q : r) = _ _

{g(zm) ■ T | g £ S, g £ f, g : rm -» r} U
{f{zi,--.,Zi-i,s,zi+1,...,zn) : T | s £ Not(ti),l < in}

The uni-sorted version of this function tends to produce a lot of irrelevant outcomes. For example,
Not(cons(s(x),nil)) does not yield only the desired {nil,cons(0,nil),cons(y,cons(z,xs))} in the informal
signature of lists of numerals but also {0, s(x),...}. On the other hand, fixing

S = {0 : nat, nil: nlist, s : nat -> nat, cons : not * nlist —>■ nlist}

we get the desired result. This problem may tend to increase dramatically with the size of the signature. It
can be argued that the notion of complementation itself without an underlying type discipline makes little
sense, not only from a complexity standpoint, but also in intellectual terms. Moreover, more refined type
theories, as dependent types and/or sub-typing will further constrain the result of the evaluation of Not.

A complement operator must satisfy the following desiderata:

1. Exclusivity: it is not the case that s is both a ground instance of t and of Not(i).

2. Exhaustivity: s is a ground instance of t or s is a ground instance of Not(i).

That is, the Not algorithm ought to behave as a the complement operation on sets of ground terms.
This cannot be achieved in all generality. In other words, intensional representations of terms are not closed
under complementation. One canonical example is as follows:

Example 2.3 Consider the signature {a : i, f : (i* i) —> i}: intuitively the complement of f(y,y) should be:

11*11-Il/(V,V)II = {a}U{f(x,z)\x?z}

Instead, the Not algorithm would incorrectly yield:

Not(/(y,y)) = {a}

In fact, Lassez & Marriot [LM87] have been the first to point out that this complement algorithm is correct
only for linear terms: complement of non-linear ones do not have a straightforward finite representation.
More sophisticated representation, such as constrained terms [Com88] have been investigated, but are not
suitable to our applications.

Moreover, as well known, the restriction to linearity seems to be almost immaterial in logic programming
thanks to the idea of left-linearization introduced by Plaisted and used first by Stickel [Sti88] to avoid

2.2. DISUNIFICATION 17

unnecessary occur checks testing. It simply consists of a source-to-source transformation which replaces
repeated occurrence of the same variable in a clause head with new variables which are then constrained in
the body by a new predicate, say eq, whose definition is simply eq(x,x); unification will then provide the
other properties of equality. For example, continuing Example 2.3, a clause such as \/y .p{y,y) «- G would
be replaced by Vzi.Vz2 .p(zi,z2) <- eq(zuz2) A G. As a matter of fact, this approach is less innocent than
it looks at first sight, since it opens the road to a CLP attitude; moreover, eq as a predicate is not linear
in itself and required an ad hoc treatment in the transformational approach to negation [BMPT90]. Miller
[Mil89a] has shown how to automatically infer the equality predicate (the copy clause, in his terminology
) for any type. However, for any order higher than the first, this clauses are not Horn and their negation
is itself problematic. One of the result in this dissertation is to apply elimination of negation to predicates
such as copy.

Once we have a way to solve complement problems, it is easy to pair it to intersection, seen as unification
[Plo71], to have a solution to relative complements as well, i.e.

||*i||-||ui,...,um|| = ||ti||n||Not(u1)||n...n||Not(um)||

Another more general approach is possible. As we have seen in the beginning, it is possible to express the
(relative) complement problem on terms as an equational problem. This is the basis to solve complement
problems with disunification, as we sketch next.

2.2 Disunification

Disunification is devoted to solving arbitrary first order formulae whose only predicate symbol is equality, call
them equational formulae. The definition of what a solution is differs on the application at hand. We may be
interested only in the overall validity or in the possible assignments that make the formula valid. As we have
seen, complement problems can be seen as systems of dis-equations with universally quantified variables.
Thus a disunification algorithm (over first-order terms) will solve these problems, possibly providing values
for free variables.

From an historic perspective this field became defined when it was realized by Martelli & Montanari
[MM82], if not by Herbrand (see the Appendix in [Sny91]) that first-order unification can be seen as a set of
transformations on sets of equations. On the other hand the work of Mal'cev [Mal71] on the decidability and
the possibility to give complete axiomatization of the theory of equational algebras qualifies as an ancestor.
The definition of Prolog-II introduced first-class dis-equations. Indeed Colmerauer [Col84] showed them to
have solutions in the algebra of rational trees. Next, Lassez & Marriot [LM87] proposed the seminal (although
awkward) uncover algorithm for computing relative complements. Kirchner and Lescanne first unified those
previous papers in the framework of equational problems and proposed a set of transformational rules,
though without a completeness proof [KL87]. Maher introduced the unification community to Mal'cev's
results [Mah88]. Comon and Lescanne were the first one to present an adequate set of rules [Com88, CL89]
and the former surveyed the field [Com91].

How to go on to derive a disunification procedure can vary from the syntax and semantics we are concerned
with, but nevertheless it entails the following steps:

• Provide a set of axioms T that hold in the model we consider.

• Design a set of rules % for the transformation of equational formulae that can be proven correct w.r.t.
T.

• Design a control C on1Z such that the application of rules satisfying C terminates: irreducible formulae
are in solved form and have the same set of solutions as the original problem.

• If arbitrary formulae are allowed and solved forms are trivially decidable, this entails the decidability
and completeness of T.

The simplest example is unification of finite (first-order) terms:

2.2. DISUNIFICATION 18

R : w = t A P[w] i—> w = iA [t/w]P
Mi : iv = t Aw ^u i—> w = t At =£ u

UEt : Vfa.PAyZt .—>■ ±
Clh(T) : f(tn)?g(5£)
Clh{F) : f(tn)=g(s^)

Deci : /(Q ^ f(v£)

Dec2 : /(Q = f(v£)

E : VjT.P

T
_L
n

j=l
n

A *» = u*
'V (35Vy.PAu) = /(f))
/es

In rule R w £ Var(t), in iJ, F contains a (dis)equation with LHS w and RHS u, where the latter is not a
variable and contains a universally quantified variable.

Figure 2.1: Some disunification rules

• T is Clark's free equality theory [Cla78].

• 1Z are, say, the Martelli-Montanari rules; correctness corresponds to the preservation of solutions under
rule application.

• Solved forms yield idempotent substitutions and control restricts the application of variable elimination.
Completeness (of the theory) is established for example as in [Mah88].

The disunification rewrite rules are divided into three big classes:

• Equality rules, i.e. rules which are correct for any equational algebra

• Rules for finite trees over any signature

• Rules for finite trees over a finite signature.

We will not present the complete set of rules with logical provisos and control. We just mention that
the first group contains Replacement, Universal Quantifier Elimination, Existential Quantifier Elimination
and Elimination of Disjunctions. The second batch contain Clash, Decomposition, Occur check. The third
section would contain rules which are sensitive to the cardinality of the signature. Here we mention only the
Explosion rule (E), which is motivated by the domain closure axiom (DCA) [MMP88]. We list in Figure 2.1
the rules relevant to the following example in their barest form, i.e. with only soundness and no termination
condition:

We now give an example of disunification on the numerals signature, which is required in the synthesis
of the odd program (see Figure 5.1). It consists in solving:

yy:z^OAz^s(s(y)) (2.1)

The intuitive solution of (2.1) is z = s(0). We will use the rules in Figure 2.1 and gloss over normalization
steps as well as elimination of trivial (dis)equations. Branches stemming from the explosion rule are numbered
and pursued separately (keeping in mind that they form a disjunction, i.e. a finitely branching tree from
a search standpoint). R{x) denote application of the rule R on variable x. The computation is traced in
Figure 2.2.

Note that disunification nicely overcomes the difference between linear and non-linear terms with different
notions of solved forms, namely unification solved form versus solved form with dis-equations [Com91].
This may be interpreted as evidence of the opportunity of rephrasing unrestricted relative complements
as disunification problems. We, on the other hand, maintain that this approach is unnecessarily general
for this purpose. Implementing disunification entails managing the non-deterministic application of a few

2.3. OTHER APPLICATIONS 19

\/y : z ? 0 A z ? s(s(y))

± *Clh(F)

>Mi(z)

*Dec,Clh{T)

►j5(x)(2.1,2.2)

7Clh{T)

Mi (x), Dec

z = s(0)

(1) Vy : 2 ^ 0 A z ^ s(s(y)) Az = 0

Vy:0^ 0A0^s(s(i/))Az = 0

(2) 3xVy -.z^OAzjt: s(s{y)) Az = s{x)

3xVy : s(x) ^ 0 A s(i) ^ s(s(j/)) A z = s(x)

EtaVy : x ^ s(j/) A z — s(x)

(2.1) BxVj/ : x £ s{y) A z = s(z) A x = 0

3xVy : 0 ^ s(y) A 2 = s(0) Ai = 0

(2.2) BxixVy : 1 ^ s(j/) A z = s(i) Ai = s(x)i

3x\x'iy : X\ ^ y A z = s(x) Ax = s(x)i

±

Figure 2.2: Computation of Vy : z ^ 0 A z ^ s(s(y))

dozen rules which eventually turns a given problem into a solved form. Though a reduction to a significant
subset of the disunification rules as the one depicted in Figure 2.1 is likely to be attainable for complement
problems, control is a major problem. Moreover the higher-order case results in additional complications,
such as restrictions on the occurrences of bound variables, which fall outside an otherwise clean framework.
As we show in this dissertation, this must not necessarily be the case. We believe that our techniques for
the higher-order case can also be applied to analyze disunification, although we have not investigated this
possibility at present.

2.3 Other Applications

Complement problems and elimination of negation are not restricted to logic programming, but have some
other relevant application in theoretical computer science. Let me refer to [JLLM91] and [Com91] for issues
impossible to detail here and for complete references.

In fact, complement problems and variants of the uncover algorithm [LM87] as a first attempt to solve
the former, have been studied and tentatively applied in several ways:

• In functional programming, to determine, modulo pattern matching, whether the program clauses
describing a function are exhaustive and disjoint, even further to produce a non-ambiguous set of
patterns. Moreover, it is possible to take advantage of the given sequential application of the rules to
provide an improved compiled code. Indeed, if, say, the second rule applies, it means the first one does
not: hence the terms reducible by the second rule are in the complement of the LHS of the first.

• The connection of complementation to the notion of ground reducibility in term rewriting systems makes
it a candidate as a checker for sufficient completeness [GH78] of an algebraic (equational) specification.
If the latter fails to be complete, the transformation rules my lead to recover the missing cases—hence
the motto in [Thi84]:

"Stop losing sleep over incomplete specifications"

2.4. COMPLEMENTING HIGHER-ORDER PATTERNS 20

Here we are looking for counter-examples: if a function is not sufficiently complete, there is a term,
built from the constructors in the signature, which is different from any LHS, thus irreducible (see
Example 2.1).

•

•

In term rewriting systems describing infinite transition systems, the complement of a LHS returns
the states from which no transition is achievable, providing thusly a tool for the temporal analysis of
communicating processes.

In machine learning, a concept can be captured by a term with some (finite) exceptions: the com-
putation of this structure, which is a relative complement, coincides with the search for an explicit
representation of the cited concept.

• Finally, applications to inductive theorem proving under the slogan induction-less induction or proof
by consistency [Com98] are under scrutiny. This is connected to the idea of the so-called inductive
reducibility property.

We now switch gears and discuss the extension of the relative complement problem to the higher-order
case; as usual, we restrict ourselves to a specific class of A-terms.

2.4 Complementing Higher-Order Patterns

In most functional and logic programming languages the notion of a pattern, together with the requisite
algorithms for matching or unification, play an important role in the operational semantics. And, of course,
patterns form the left-hand sides of rewrite rules and are thus critical to the study of rewrite systems. Con-
sequently, analysis of the structure of patterns is an important task in the implementation of programming
languages and more abstract studies of rewriting systems and their properties.

Perhaps the most fundamental problems are matching and unification, but other questions such as gener-
alization also arise frequently. Here, we are concerned with the problem of pattern complement in a setting
were patterns may contain binding operators, so-called higher-order patterns [Mil91, Nip91]. A term possibly
containing some existential variables is called a pattern if each occurrence of an existential variable has the
form E xi.. .xn, where the arguments Xi are distinct occurrences of free or bound variables (but not existen-
tial variables). Higher-order patterns have found applications in logic programming [Mil91, Pfe91a, MP93],
logical frameworks [DPS97], term rewriting [Nip93], and functional logic programming [HP96]. Higher-order
patterns inherit many pleasant properties from the first-order case. In particular, most general unifiers [Mil91]
and least general generalizations [Pfe91b] exist, even for complex type theories.

In this section we discuss some of the preliminary issues towards a generalization to the complement
algorithm to higher-order patterns. We assume the following:

• All terms are linear, i.e. existential variables occurs only once.

• Types do not contain occurrences of the primitive type o. We thus complement only terms with no
inner logical structure.

The main difference w.r.t. the first-order case is twofold: first, the second-order (relative) complement
problem is not semi-decidable, but higher-order disunification on higher-order patterns is decidable [Lug94].

Secondly, as we will see, the class of patterns is not closed under complement, although a special subclass
is. We call a canonical pattern T h M : A fully applied if each occurrence of an existential variable E under
binders y\,... ,ym is applied to some permutation of the variables in T and yi,. ■ ■ ,ym. This is formally
defined in Figure 2.3. Fully applied patterns play an important role in functional logic programming and
rewriting [HP96] because any fully applied existential variable r h E x\... xn denotes all canonical terms
with free variables from T. It is this property which makes complementation particularly simple. In fact, the
main difference with the first-order case is that we need to carefully keep track of bound variables: those are
collected in a context T, so that the complement of a rigid term is taken w.r.t. both the signature and the
current context. In the case the term is not fully applied, the complement has to take into account whether
some of the variables mentioned in a lambda binder do appear in the matrix; we discuss this in the next
Section 2.5. We first analyze the simpler case.

2.4. COMPLEMENTING HIGHER-ORDER PATTERNS 21

y- = dom(r) r, a;: A l-s M f.a.
• FaPat FaLam

T^Ey^ f.a. T\~EXx:A.M f.a.

heTUT, T F-E Ar! f.a. • • • T hs iV„ f.a.
FaApp

T\-zhN„ f.a.

Figure 2.3: M is a fully applied pattern: r r-£ M f.a.

The language of the simply-typed A-calculus is as follows, where we use a for atomic types (different from
the type of proposition o), c for term-level constants, and x for term-level variables, while h will stand for a
constant or a variable.

Simple Types A
Terms M

Signatures E
Contexts T

- a\Ax->A2

- c\x\ Xx:A. M \ Mi Mo
= • | E,a:type | Y,,c:A
= -\T,x:A

We require that signatures and contexts declare each constant or variable at most once so that, for
example, when we write T,x:A, x may not already be declared in I\ Furthermore, we identify contexts
which differ only in their order, in other words, contexts are treated as sets of declarations for distinct
variables. We promote "," to denote disjoint set union. As usual we identify terms which differ only in the
names of their bound variables. We restrict attention to well-typed terms, omitting the standard typing
rules.

In applications such a logic programming or logical frameworks, A-abstraction is used to represent binding
operators in some object language. In such a situation the most normal forms are long ßrj-noimal forms
(which we call canonical forms), since the canonical forms are almost always the terms in bijective corre-
spondence with the objects we are trying to represent. Every well-typed term in the simply-typed A-calculus
has a unique canonical form—a property which persists in the strict A-calculus introduced in Chapter 3. See
that chapter for further discussion and an inductive definition of canonical forms.

We denote existential variables of type A (also called logical variables, meta-variables, or pattern vari-
ables) by EA, although we mostly omit the type A when it is clear from the context. We think of existential
variables as syntactically distinct from bound variables or free variables declared in a context.

Semantically, an existential variable EA stands for all canonical terms M of type A in the empty context
with respect to a given signature. We extend this to arbitrary well-typed terms in the usual way, and write
||M|| for the set of canonical ground instances of a term M possibly containing existential variables (formally
defined in Figure 4.2). In this setting, unification of two patterns corresponds to an intersection of the set
of terms they denote [Mil91, Pfe91b]. This set is always either empty, or can be expressed again as the set
of instances of a single pattern. That is, patterns admit most general unifiers.

We now introduce the generalization of the Not algorithm to the fully-applied case:

Definition 2.4 (Fully applied higher-order pattern complement) Fix a signature E. For a fully ap-
plied higher-order linear pattern in canonical form M, define T \- Not(M : A) as:

T I- Not(J5 x^:a) =0
T h Not(/i Mi ... Mm : a) = diffr(h : X^ -> a) U

{h {zx D ... (Zi_i r) N (zi+1 r)... (zm r) |
N € r h Not(Mi : At), 1 < i < m}

ThNot(\x:A.M :A-*B) = {Ax: A TV | N € (T,x : A \- Not(M : B))}

where m > 0, (Z T) denotes that a fresh variable Z of appropriate typing may depend on variables in dom(T)
and

diffr(h:A^^a) = {g(Z1T)...(ZnT)\g£i:uT,g:A^^a,n>0,h^g}

2.4. COMPLEMENTING HIGHER-ORDER PATTERNS 22

Note that the definition makes an essential use of the fact that M is canonical and thus its matrix has atomic
type a.

Remark 2.5 For h € T U S,T h Not(/i : a) = di#r(/i: a).

Proof: Consider the 0-ary application case. D

We will suppress mention of the type in T r- Not(M : A) when it can be inferred from the context.

Example 2.6 Consider the untyped X-calculus2.

e ::= x \ Ax.e \e\e2

We encode these expressions using the usual techniques of higher-order abstract syntax (see, for example,
[MP91]) as canonical forms over the following signature S;am.

exp : type

lam : {exp —> exp) —> exp

app : exp —> exp —> exp

rxn = x : exp

The representation function is given by:

rAx.e~l ~ lam (\x:exp.re~l)
re\ e2n = app rei"1 re-p

As usual with higher-order abstract syntax [PE88], we identify the name of (bound) variables in both lan-
guages. The adequacy of the encoding bijectively relates a-equivalence classes of object-level terms with
ßn-equivalence classes at the meta-level. Now, suppose we want to negate the identity predicate on unary
function types:

id(Xx:exp.x).

The intuitive answer is as follows:

-^id(\x:exp.app (E\ x){E2 x)).
-iid(\x:exp.lam (Xy:exp.(E x y)).

This follows from the computation of ■ h Not(\x:exp.x):

■ \- Not(\x:exp.x) = {Xxiexp.Z \ Z € (x:exp h Not(x))}

= {Xx:exp.Z \ Z € diffx:exp(x:exp))}

= {Xx:exp.Z \ Z € {app (Eix)(E2x),lam (Xy.exp. (E x y))}}

= {Xx:exp.app (Ei x)(E2 x),Xx:exp.lam (Xy. (E x y))}

For another illustration, consider the representation of an object-language ß-redex:

■"(Ax.e)/"1 = app (lam (Xx:exp. re~1)) r/"1

where re~[my have free occurrences of x. When written as a pattern with variables Eexp^exp and Fexp

ranging over closed terms, this is expressed as app (lam (Xx:exp. (E x)) F). Consider the predicate:

betardx(app (lam (Xx:exp.E x)) F).

The complement of the arguments in the empty context contains every top-level X-abstraction plus every
application where the first argument is not an abstraction:

■ h Not(app (lam (Xx:exp. (E x)) F)) = {lam (Xx:exp. Z x),app (app Zx Z2) Z3}
2We use A for lambda abstraction in the object-calculus, not to be confused with A in the meta-language.

2.5. PARTIALLY APPLIED TERMS 23

Thus the negation of the betardx predicate is:

-ibetardx(lam (Xx:exp.Z x)).
-<betardx(app (app Z\ Z2) Z3).

If the term to complement is complex, we need to call the Not algorithm recursively as many times as
its depth. Let us see another slightly more complicated example.

Example 2.7 Consider the signature of numerals and the problem ■ h Not(A/ :n -» n. f 0).

•|-Not(A/:n-»n./0) = {Xf:n -s- n. Z | Z e (f:n -> n h Not(/ 0))}

= {\f:n-+n.Z\Ze difff(f)ö {/ Z' \ Z' G {f :n -> n h Not(0))}}

= {\f:n -^n.Z\Z€ {O,^ /)} U {/ Z' | TV' £ {/(Z2 /),s(/V3 /)}}

= {\f:n -> n.0,A/:n -+ n.s^ /),A/:n -> n. f(f(Z2 f)),Xf. f(s(Z3 /))}

2.5 Partially Applied Terms

Consider a predicate on the signature E;ara true if a unary (object-level) function rAx.en does not depend
on its argument. This can be encoded using a pattern variable Eexp which does not depend on x.

vacous(\x:exp. E). (2.2)

Intuitively, the complement should be a predicate, say strict, true when the function does use its arguments.
Note that there is no finite set of patterns which has as its ground instances exactly those terms M which
depend on a given variable x. One way to express it is as follows:

strict(Xx:exp.x).
strict(Xx:exp.app {E\ x)(E2 x))

«— strict(\x:exp. Ei x).
strict(Xx:exp.app (E\ x)(E2 x))

4- strict(\x:exp.E2 x).
strict(\x:exp.lam (Xy:exp.(E x y)))

<r- i\lz:exp.strict{\x:exp.{E x z))).

Hence the complement of a fact, whose arguments are partially applied patterns, may lead to possibly
hypothetical and parametric clauses.

Example 2.8 The encoding of an r\-redex takes the form:

rAi.ei1 = lam(Xx:exp.app re~l x)

where re"1 may contain no free occurrence of x. The side condition is again expressed in a pattern by
introducing an existential variable Eexp which does not depend on x, that is lam(Xx : exp.(app E) x).
Hence, its complement with respect to the empty context should contain, among others, also all terms

lam (Xx:exp.app (F x) Z)

where F must depend on x.

More generally, we would have to decorate programs with predicates discriminating when a pattern is
fully applied or not. It is clear that the simply typed A-calculus, or, for that matter, every other intuitionistic
type theory is not strong enough to represent the complement of partially applied patterns. This failure of
closure under complementation cannot be avoided similarly to the way in which left-linearization bypasses
the limitation to linear terms and it needs to be addressed directly.

One approach is taken by Lugiez [Lug95]: he modifies the language of terms to promote constraints
to first-class objects, similarly in spirit to explicit substitutions. For example Xxyz. M{1,3} would denote

2.5. PARTIALLY APPLIED TERMS 24

a function which depends on its first and third argument. The technical handling of those objects then
becomes awkward as they require specialized rules which are foreign to the issues of complementation.

We can instead internalize the (in)dependence constraints in a type theory which explicitly take into
account the occurrence issue. Since our underlying A-calculus is typed, we use typing to express that a
function must or must not depend on its argument. Following standard terminology, we call such terms
strict in x and the corresponding function Xx: A. M a strict {unction. The natural choice is a calculus of
strict types and is formalized in Section 3.1. We first give an informal presentation.

We can introduce a strict application primitive constructor, say F *x, which express the fact that F
must use an argument x mentioned in the context. Thus for example:

• h Not(Ae: exp. E) = Xx: exp. F *x

Therefore, the complement of (2.2) would be:

->vacous(Xx:exp. F *x).

Conversely, taking the complement of terms where arguments must occur yields terms where some argu-
ment must not occur: for example

• h Not(Xx:exp. Xy.exp. E *y *x) = {Xx:exp. Xy.exp.F,Xx:exp. Xy.exp.F-^x,

Xx:exp.Xy:exp. F2 y}

Let x~H, y~^ be two sets of variables such that y^ C x^. Let z^ = x^ — y^. We first treat the intuitionistic
application case. The complement of Xx^. E y^ is the set of terms that may depend on y^ but has to
depend on one of the z^'s, that is p terms such that, for an appropriate context T:

v
T h Not(£ y£) - (J {Ej y^ z\... Zj_i *Zj zj+i ...zp}

The complement of terms with strict application is defined as:

m

r h Not(£ *y*y2 ...*ym) = \J{Ejyi... y^ yj+1 ...ym)
j=i

Example 2.9

■ h Not(Xxyzw. E y w) = {Xxyzw. Fi y w *x z, Xxyzw. Fi y w x *z]

■ h Not(Aa;y. E *x *y) = {Xxy.Fi x,Xxy.F2 y}

Yet, there is a certain asymmetry between strict and intuitionistic application: while the former com-
pletely determines the occurrence status of a variable, the latter leaves the status floating indeterminately
between the possibility of occurrence or not. We can benefit from a notation which captures the 'non-
occurring' condition explicitly. One possibility is to decorate bound variables as well as function types with
three occurrence annotations 1,0, u with the intended meaning of:

x

x°

1 • x must occur

x must not occur

x is undetermined

Its intended semantics, as a type theory, is explored next.

Chapter 3

A Strict A-Calculus

In this Chapter we introduce a strict A-calculus and develop its basic properties, culminating in the existence
of canonical forms 3.2. Chapter 4 will introduce a restriction of the language for which complementation is
possible.

3.1 Strict Types

As we have seen in the preceding Chapter, the complement of a partially applied pattern in the simply-
typed A-calculus cannot be expressed in a finitary manner within the same calculus. We thus generalize our
language to include strict functions of type A —> B (which are guaranteed to depend on their argument)
and invariant functions of type A -» B (which are guaranteed not to depend on their argument). Of
course, any concretely given function either will or will not depend on its argument, but in the presence of
existential variables we still need the ability to remain uncommitted. Therefore our calculus also contains
the full function space A A B. A similar calculus has been independently investigated in [Wri91, BF93]: for
a comparison see Section 3.3.

Labels k
Types A

Terms M
Contexts T

= 1 | 0 j u
= a \ Ai A- At
= c\x\ Xxk:A. M | (Mi M2)

k

= -\T,x:A

Note that there are three different forms of abstractions and applications, where the latter are distin-
guished by different labels on the argument. It is not really necessary to distinguish three forms of application
syntactically, since the type of function determines the status of the application, but it is convenient for our
purposes. If a label is u it is called undetermined, otherwise it is determined and denoted with the metavari-
able d.

We use a formulation of the typing judgment with three zones, containing the unrestricted, irrelevant
and strict hypotheses, denoted by T, ft, and A, respectively.

T;Ü;A\- M :A

We implicitly assume a fixed signature E which would otherwise clutter the presentation. Recall that Ti, T2

is a union of two contexts which do not declare any common variables. Recall also that we consider contexts
as sets, that is, exchange is left implicit.

Our system is biased towards a bottom-up reading of the rules in that variables never disappear, i.e. they
are always propagated from the conclusion to the premises, although their status might be changed.

Let us go through the typing rules in detail. The requirement for the strict context A to be empty in
the Idu and Id1 rules expresses that strict variables must be used, while undetermined variables in T or
irrelevant variables in U can be ignored. Note that there is no rule for irrelevant variables, which expresses
that they cannot be used.

3.1. STRICT TYPES 26

c:A G £
Con

T;Sl;-\-c:A

Idu „ Id1

{T,x:A)\ti;-\-x : A no Id0 rule T;ft;x:A \- x : A

(r,a;:^);ft;AI-M:S
A-1

r;ft;AI- Ax": A M : A A- B

r;((l,i:i);AhM:ß
4/

r;ft;AhAx0:AM: A-% B

T;{l;(A,x:A)\- M :B
4/

r;ft;Ah \xl:A.M : A 4 B

T;ft;A\-M :A^B (I\A);ft; hiV: A
E

T; ft; A h M TV" : ß
A

r;(l;AhM:/l4B (r,ft,A);-; •hiV :A
0

T; ft; A h M N° : B
-> E

(r, A^);ft;AM^M:A4ß (I\AM) ft;AA -hJV :A
A E

T;fl;(AM,AN)^-M Nl:B

Figure 3.1: Typing rules for A-*

3.1. STRICT TYPES 27

 1 1 ; ;—Idl ; ; Idl

'■.A; ■; x:A -^A-^Bhi: AAAAB x:A A A A- B;-; y.A h y : A

■;-;(X:AA AA B,y.A)\-xy1 -.AAS (x:A A A A B,y.A);;- h y : A ,
E : : Idu

E
■ ;-;{X:AA AA B,y.A)^- {xy^y1 : B

Figure 3.2: First derivation of •; •; (x:A A A A B,y:A) \- {xy1)y1 : B

 : : Id1 - Idu

y.A; ■; x:A A A A B h x : AAAAB (x:A A A A B, y.A); -;-h y : A ,
'■ E - Id1

y.A; ■; x:A A A A B h xy1 : A A B x:A A A A B;-; y.A h y : A

■;-;(x:A A A A B,y.A) h {xyl)yl : B

Figure 3.3: Second derivation of •; •; (x:A —> A —> B,y:A) \- {xy1)y1 : B

The introduction rules for undetermined, invariant, and strict functions simply add a variable to the
appropriate context and check the body of the function.

The difficult rules are the three elimination rules. First, the undetermined context T is always propagated
to both premises. This reflects that we place no restriction on the use of these variables.

Next we consider the strict context A. Recall that this contains the variables which should occur strictly
in a term. An undetermined function M : A A B may or may not use its argument. An occurrence
of a variable in the argument to such a function can therefore not be guaranteed to be used. Hence we
must require in the rule A E for an application M Nu that all variables in A occur strictly in M. This
ensures at least one strict occurrence in M and no further restrictions on occurrences of strict variables in
the argument are necessary. This is reflected in the rule by adding A to the undetermined context while
checking the argument N. The treatment of the strict variables in the vacuous application M N° is similar.

In the case of a strict application M N1 each strict variable should occur strictly in either M or TV. We
therefore split the context into AM and AN guaranteeing that each variable has at least one strict occurrence
in M or N, respectively. However, strict variables can occur more than once, so variables from Ayv can be
used freely in M, and variables from AM can occur freely in N. As before, we reflect this by adding these
variables to the undetermined context.

Finally we consider the irrelevant context fi. Variables declared in fi cannot be used except in the
argument to an irrelevant function (which is guaranteed to ignore its argument). We therefore add the
irrelevant context Q to the undetermined context when checking the argument of a vacuous application
M N°.

We now illustrate how the strict application rule non-deterministically splits contexts. Consider the
typing problem •; •; (x:A A A A B,y:A) h (xy1)y1 : B. There are four ways to split the strict context:

AM = x:AA AA B,y:A AN = •
AM = x:A A A A B AN = y.A
AM = V-A AN = x:A A A A B

AM = • Ajv = x:A A A A B,y:A

Only the first two yield a valid derivation (depicted in Figure 3.2 and Figure 3.3), as x needs to be strict in
the leftmost branch.

Our strict A-calculus satisfies the expected properties, culminating in the existence of canonical forms
which is critical for the intended applications. We begin with the following:

i

Remark 3.1 (Inversion) All rules in A-* are invertible.

We will often use inversion principles tacitly in proofs by structural induction on the typing derivation.
Note that, although typing derivation may not, typing is unique.

Theorem 3.2 (Uniqueness of Typing) // T; ft; A I- M : A and T'; ft'; A h M : A', then A = A'.

AE

3.1. STRICT TYPES 28

Proof: By induction on the structure of the given derivations, exploiting 'functionality' of signatures and
contexts. O

We start addressing the structural properties of the context (s). Exchange is directly built into the
formulation and will not be repeated.

Theorem 3.3 (Weakening)

1. (Weakening") IfT;Ü;A\-M:A, then (r,z:C);ft; A h M : A.

2. (Weakening0) If T; ft; A h M : A, then T; (ft,x:C); A \-M : A.

Proof: By induction on the structure of the given derivation. D

The following properties allow us to lose track of strict and vacuous occurrences, if we are so inclined.
We use the phrase 'by sub-derivation' to localize the immediate sub-derivation(s) of a given one; 'by rule'
means in this Chapter by application of the correct (and unique) typing rule, when not explicitly mentioned.

Theorem 3.4 IfT; (ft,x:C); A h M : A, then (T, x:C); Ü; A V M : A.

Proof: By induction on the structure of V :: T; (Cl,x:C); A\- M : A .

Case:
^ c:A € S
V = Idc

T;(n,x:C);-\-c:A

Then

Case:

Then

Case:

Then

Case:

V

c:A € S
S = Idc

(r,x:C);£l;-\-c:A

V = id»
{T,y:A);(n,x:C);-\-y:A

S = Idu

(r,y:A,x:C);n;-\-y:A

T> = Id1

r;(n,x:C);y:A\-y:A

£ = Id1

(r,x:Cy,n;y:A\-y.A

V
T;(U,x:C,y:A);A\-M : B

r;(ft,x:C);AI-(A2/0:AM) : A Aß

T; (ft, x:C, y.A); A h M : B By sub-derivation
{r,x:C);{n,y:A);A\-M :B By IH on V
(r,z:C);ft;AI-(A2/0:AM) : A A B By rule A I

Case: V ends in A / or —► /: the claim follows from an immediate appeal to the inductive hypothesis, as in
the above case.

3.1. STRICT TYPES 29

Case:

V =
T;{ü,x:C);A\- M : A ^ B

V2

(T,A);(il,x:C);-\-N:A

T;{n,x:C);A\- M Nu : B

Vi ::T;(Q,x:C);A\- M :A-^B
(T,x:C);Ü;Ah M :A^ B
V2 ::(r,A);{Q,x:C);-\-N:A
(r,A,x:C);Sl;-\-N:A
(T,x:C);n-A\-MNu:B

Case:

V =
T;{ü,x:C);Ah M :A Aß

T>2
(T,n,A,x:C);-,-^- N :A

T;{ü,x:C);A\-M N° :B

Y-{Ü,x:C);AhM :A±B
(T,x:C);Ü;A\-M :A^B
(T,n,A,x:C);-,-\-N:A
(T,x:C);Ü;A\- M N° : B

4£

By sub-derivation
By IH on Vx

By sub-derivation
. By IH on V2

By rule A E

A£

By sub-derivation

By IH on Vx

By sub-derivation
By rule A E

Case:
VY

P =
(r, AN);{Ü,x:C); AM \- M : A A B

V2

(r,AM);(n,x:C);ANhN:A

r;(n,x:C);(AN,AM)\-M N1 : B
A£

(r, AN); (fi, x:C);AM \- M : A A B
(r, x:C, AN); ft; AM V- M : X A B
(r,AM);(n,x:C);AN\-N:A
(T,x:C,AM);Q;ANy- TV: A
{T,x:C);n;(AN,AM)\-M N1 : B

Corollary 3.5 (Loosening0) IfT; (ft,$); A I- M : A «ACT» (r,$); ft; A h M : A.

Proof: By repeated application of Theorem 3.4.

Theorem 3.6 IfT;(l;(A,x:C)\-M : A, then (r,i:C)i(l;AhM:i

Proof: By induction on the structure of V :: T; ft; (A, x:C) \- M : A.

Case: V ends in Con,Idu: vacuously true.

Case:

By sub-derivation
By IH on Vx

By sub-derivation
By IH on V2

By rule A E

O

□

x> =
T:n:x:A\- x : A

Id1

Then
£ = ■ Idu

Case:

v = -

(r,x:A);ü;-\-x:A

T;n;(A,x:C,y:A) h M : B

r;n;(A,x:C)h(A2/
1:A.M) : A Aß

A/

3.1. STRICT TYPES 30

T;ü;(A,x:C,y:A)\-M:B
(V,x:C,y,n;(A,y:A)\-M:B
(r,x:C);Sl;&\-(\y1:A.M) : A 4 B

By sub-derivation
BylH

By rule

Case: V ends in A I or —> I: the thesis follow from an immediate appeal to the inductive hypothesis as in
the above case.

Case:

V =
r;ft;(A,x:C)h M : A A B (r,A,x:C);fi;-h N : A

r;(l;(A,i:C)hMr:B
AE

T;fl;{A,x:C)\-M:AAB
(r,i:C);fi;AhI:A4B
ir,A,x:C),tl]-\-N:A
(r,x:C);ft;Ah M Nu :B

By sub-derivation
BylH

By sub-derivation
By rule

Case:

V--
T;Ü;(A,x:C)\- A! : A A B (T,n,A,x:C);-;-\- N :A

r;Q; (A, x:C)hM N° : B
AE

r;ü;(A,x:C)\- M-.AA B
{T,x:C);Q;A\- M :AA B
(T,Sl,A,x:C);-,-\-N:A
(T,x:Cy,n-A\-M N° : B

Case: V ends in —K There are two sub-cases:

x e AM V =

By sub-derivation
BylH

By sub-derivation
By rule

(T,AN);n;(AM,x:C) h M' : A 4 B {T,A'M,x:C);ü;AN \-N : A

T;n;(A'M,x:C,AN)\-M N1 : B

(T,AN);ü;(A'M,x:C)hM:AAB
(T,AN,x:Cy,n;A'MhM:AAB
(T,A'M,x:Cyn;AN^N:A
(T,x:C);Q;{^N,A'M)\- M N1 : B

x € Aj^ Symmetrical to the above.

By sub-derivation
BylH

By sub-derivation
By rule

D

Corollary 3.7 (Loosening1) // V; ft; A h M : A, then (T, A); ft; • h M : A.

Proof: By repeated application of Theorem 3.6. O

Theorem 3.8 (Substitution Properties)

1. (Substitution") If (I\ x:A); ft; A h M : C and (I\ A);Q;-hJV: A, then T; ft; A h [N/x]M : C.

2. (Substitution0) If T; (ft, x:A); A h M : C and (T, A, ft); •; ■ h AT: A, then T; ft; A h [N/x]M : C.

3. (Substitution1) If (T, AN); ft; (AM,x:A) h M : C and (T, AM); ft; AN \- N : A, then
r;Ü;(AM,AN)h[N/x]M:C.

Proof: The proof is by mutual induction on the height of the derivation V of M : C. We show the crucial
cases.

3.1. STRICT TYPES 31

1. Substitution"

Case:

As [N/x}c = c, then

Case:

As [N/x]y = y, then

Case:

V
c:CeZ

C in

(r, x:A);Q; ■ \~ c : C

T =
c:C €£

r-n-hc-.c
Con

T> = T

{T',x :A,y:C);Q;-\-
1

y.C

T T -/"

(I" ,y:C);n;-l-j/ :C

V — /d»
(r,x:A);fi;-hx:C

As [N/x]x = NandC = A, then ^ = £ :: T; fi; • h TV : C

Case:
V = -

(T,x:A);Ü;y:Chy:C
Id1

As [N/x]y = ?/, then
Jf = Id1

Case:

V =

T-n-y.Chy.C

(T,x\A,y:B);Sl\b.\- M \C

(r, i:A); ft;AhAj,M:B.M:BAC
A J

(r,2;:i,i/:B);fi;AI- M : C
T;Sl;-\-N:C
(r,y:B);tl;-\-N:C
{T,y:B);ü;A^[N/x}M : C
T; fi; A h (Xyu: B. [N/x]M) : A A B
T; fi; A h [N/x] (Xyu :B.M):A^B

Case: V ends with —> I,—t I: similarly.

Case:

V =

x>i
(T,x:A);n-A\- P:B AC

V2

(r,A,x:A);fi;-hQ

By sub-derivation
By hypothesis

By Weakening"
BylH

By rule
By subst.

:B

(T,x:A);fl]AhP Qu : C
E

(r,x:A);ü;A\- P:BAC
£ :: (T,Ay,Ü;-\- N :A
r;fl;Ah [N/x]P : B A C
{T,x:A,A);fl;-\-Q:B
(T,A);n;-\-[N/x]Q:B
r;ß;Ah ([N/x]P)([N/x]Q)u : C
r;tl;Al-[N/x}{P QU):C

By sub-derivation
By hypothesis

By IH on £>i and £
By sub-derivation

By IH on V2 and £
By rule

By substitution.

3.1. STRICT TYPES 32

Case:

V =

■Di

(T,x:A);ü;A\- P:B-^C
T>2

(T,A,n,x:A);-,-\-Q:B

(T,x:A)-fl;A\~PQ° :C
E

(r,x:i);Q;AI-P:B4C
£ ::(r,A);fl;-\-N:A
T;n;Ah[N/x]P:B^C
(T,x:A,(l,A);-,-\-Q:B
£'::{r,b,n);-,-\-N:A
(T,A,Q);-;^[N/x}Q:B
r;ft; A h [N/x]{P Q)° : C

By sub-derivation
By hypothesis

By IH on Vx and £
By sub-derivation

By Loosening0 ft in £
By IH on V2 and £'

By rule

Case: V

(r,ri,AQ);fi;AphP:B4C
V2

{r,x:A,AP);Sl;&Qh-Q:B

(r,x:A);ü;(Ap,AQ)\-PQ1:C

(r,^,A0);fi;AphP:ß4C
£::(T,AP,AQ);Ü;-\-N:A
(T,AQ);Cl;Aph[N/x]P:B-^C
(r,x:A,Ap);ft;AQhQ:ß
(T,Ap);n;AQ\-[N/x]Q:B
T;{l;(Ap,AQ)^[N/x}(PQ)1:C

E

By sub-derivation
By hypothesis

By IH on £>i and £
By sub-derivation

By IH on P2 and £
By rule

2.

3.

Substitution0 Similar to the above.

Substitution1

Case: V ends in Con,Idu: vacuously true.

Case:

and [N/x}x = N; then AM = •, T :

(r,Aiv);ft;a;:AI-:r : .4

£ ::r;ft;AArHiV.

■/d1

Case:
T>i

(r,AN);(n,y:B);(AM,x:A)\-Q:C
v = -

(T,AN);Ü;(AM,x:A) h Xy°:B.Q : B A C

Vx :: (r,Aw);(ft,j/:ß);(AM,x:A) h Q : C
^(r.AA^ftjAjvt-iV^
£'::(T,AM);(n,y:B);AN\-N:A
r;(n,y:B);(AM,AN) h [N/x]Q : C
T; ft; (AM, AJV) h Ay0 :£. [JV/s]Q : B A C
r;ft;(AM,Aw) h [iV/a;](A2/0:ß.Q) : £ A C

■A/

By sub-derivation
By hypothesis

By Weakening0 on £
By IH on Vi and £'

By rule
By substitution.

Case: V ends with A I. Proceed similarly using Weakening".

Case: V ends with -» J. It follows by an immediate appeal to the IH.

Case:
(r, AN); ft; {AM,x:A) h P : B A C (I\ AM, x:A, A*); ft; • r- Q : B

V = -
{Y,AN);tt-{AM,x:A)h P Qu :C

E

3.1. STRICT TYPES 33

2>i :: (r, AN); fi; (AM, x:A) hP:B4C
£::(r,AM);n;ANhN:A
T;n;(AM,AN)\-[N/x}P:B^C
V2 ■.■.(r,AM,x:A,AN);U;-hQ:B
(r,AM,AN);ü;-\-[N/x}Q:B
r;Q;(AM,AN) \- [N/x](P Q)u : C

Case: T> ends in —» £: similar.

Case: Z? ends in —► 2J: there are two sub-cases , where AM = Ap, AQ:

x e AP V-

By sub-derivation
By hypothesis

By IH on Vx and £
By sub-derivation

By IH on £>2 and £
By rule

(r,AN,AQy,n;(A'P,x:A)\-P:B^C
Vo

(r,AN,x:A,A'P);n;AQ\-Q:B

(T.AN);ü;(A'P,x:A,AQ)^PQl:C

Vi :: (T,AN,AQ);Q;(A'P,X:A)\- P : B -
£::(r,A'PAQ);n;AN\-N:A
(T,AQy,Ü;(A'P,AN)l-[N/x}P:B^C
(r,AQ,AN);Cl;A'P\- [N/T]P : B ± C
V2 ::(r,AN:x:A,A'p):fl:AQ\-Q:B
£'::(T,A'P,AQ,ANy,n;-\-N:A

c

(T,AN,A'pyü;AQ^[N/x]Q:B
T;n;(A'P,AQ,AN)\-[N/x](PQy

x 6 AQ Symmetrical to the above.
C

By sub-derivation
By hypothesis

By IH3onP!,£
By Loosening1 Ayy

By sub-derivation
By Loosening1 A^ in £

By IH 1 onP2,£'
By rule

D

Theorem 3.9 (Contraction) Let z be a fresh variable of type A:

1. (Contraction"1) If {T,x:A,y:A)\Sl\A\- M : C, then (r,z:A);fi;A h [z/y]([z/x)M)

2. (Contraction0) If T; (ft, x:A, y:A);A \- M : C, then T; (ft, z:A); A h [z/y){[z/x\M)

3. (Contraction1) IfT;Q.\{A,x:A,y:A) \- M : C, then r;ü;(A,z:A) h [z/y]{[z/x]M)

Proof:

1. (T,x:A,y:A);Q;A\- M :C
{rix:A,y:A,z:A);Sl;A\- M :C
(r,y:A,A,z:A);ü;-\- z: A
(T,y:A,z:A)-n;A\- [z/x]M : C
(T,A,z:Ayn-r\-z:A
(T,z:Ayn;A\-[z/y}({z/x]M):C

2. Similarly, using Substitution0.

3. T;il;{A,x:A,y:A)\- M : C
(T,z:A);n;(A,x:A,y:A)\- M : C
(T,y:A,A);ü;z:A V z : A
T;Ct;(A,y:A,z:A) h [z/x]M : C
(T,z:Ay,ü;(A,y:A)\-[z/x}M:C
(T,Ay,fl;z:A\-z:A
T;n;(A,z:A)^[z/y}([z/x]M):C

C.

C.

c.

By assumption
By Weakening"

By rule Idu

By Substitution"
By rule Id"

By Substitution"

By assumption
By Weakening"

By rule Id1

By Substitution1

By Loosening1

By rule Id1

By Substitution1

D

3.1. STRICT TYPES 34

The notions of reduction and expansion derive directly from the ordinary ß and r\ rules.

(Xxk:A.M)Nk A [N/x]M

M:A^B Ä- Xxk:A.Mxk

Indeed one of the main reason to introduce irrelevant variables, as ones which may occur but must not
be used, is to well-type 7j-expansion of invariant functions:

M : A A B A \x°:A. M x°

The subject reduction and expansion theorems are an immediate consequence of the structural and
substitution properties.

Theorem 3.10 (Subject Reduction) If T;Q; Ah M : A and M -A M' then T; ft; A h M' : A.

Proof: By cases on k:

1. Let M = (\xu: B. P)QU : A and M' = [Q/x]P.

r;fi;Ah (Ax" :B.P)QU : A By hypothesis
£ :: (r, A); ft; • h Q : B By inversion
r; Ü; A h \xu : B. P : B A A By inversion
V :: (r, x:B); ft; A I- P : A By inversion
r; ft; A h [Q/x]P : A By Substitution" on V, £

2. Let M = (\x°:B. P)Q° : A and M' = [Q/x]P.

T; ft; A h (Xx° :B. P)Q° : A By hypothesis
£ :: (r, ft, A); ■;■ h Q : B By inversion
r; ft; A I- Xx° : B. P : B A A By inversion
V :: T; (ft, x:B); Ah P:A By inversion
r; ft; A h [Q/x]P : A By Substitution0 on V, £

3. Let M = (Ax1 :B.P)Q1 : A and M' = [Q/a;]P.

T; ft; A 1- (Ax1 :ß. P)Q1 : A and A = AP, AQ By hypothesis
£ :: (r, Ap); ft; AQ h Q : B By inversion
(r,AQ);ft;AP h Xxl :B.P : B -^ A By inversion
V :: (r, AQ); ft; (AP,x:B) h P : A By inversion
T; ft; (AP, AQ) h [Q/x]P : A By Substitution1 on V, £

D

Theorem 3.11 (Subject Expansion) If T;Ü; Ah M : A-^ B and M -^ M' then T; ft; A I- M' : A 4
P.

Proof: By cases on k:

1. T; ft; A h M : A A P By hypothesis
(r, x:A); ft; A h M : A A ß By Weakening"
(r,x:A,A);ft;-hx: A By rule Id"
IT,X:A);Ü; Ah M xu:B By rule A E
T;Ü;AhXxu:A.M xu:A AP- By rule A /

3.1. STRICT TYPES 35

(Xxk:A. M)Nk -A[JV/:r]M k /*

* n

M AQ
M- 1/

(M JV)* A (Q N)k

M A M'

\xk:A.MA\xk:A.M
M- A

iVA<?

(Af 7Vf A (M Qf
M- /X

Figure 3.4: Reduction rules for A

2. T;Ü;Ah- M :AAB
T;{Ü,x:A);A\- M : A A B
(T,fl,x:A,A);-,- \-x : A

(r,i:A);(l;AhMi° : B

r;ft;Ah \x°:A.M x° : A A B

3. r;fl;AhM:i4ß
(r,x:i);(];AhM:AAß
{T,A);n;x:A\-x : A

T;Sl;(&,x:A)\-M x1 :B
T;Ü;A\- \xl:A.M x1 : A A B

By hypothesis
By Weakening0

By rule Idu

By rule A E

By rule A J

By hypothesis
By Weakening"

By rule Id1

By rule A E
By rule A /

D

We can now give the definition of reduction in Figure 3.4: we write n- for the reflexive and transitive
closure of I-K

Theorem 3.12 (Subject Reduction with Congruences) // T;ft; A h M : A and M A M' iften
T; fi; A I-AT : 4.

Proof: By induction on the derivation of M >-> M', using Subject Reduction (Theorem 3.10) for the base
cases. □

The following Lemma establishes a sort of consistency property of the type system, so that a term can
be typed only by exclusive contexts. In particular we show that a term M cannot be both strict and vacuous
in one variable, say x. This will be central in the proof of disjointness of term complementation (Theorem
4.20):

Lemma 3.13 It is not the case that both ri;fii;(Ai,x:C) h M : A and T2; (ft2,:E:C); A2 h M : A.

Proof: By induction on the structure of Vy :: Ti;üi; (Ai,x:C) \- M : A and inversion on
P2::r2;(fi2,x:C);A2hM: A.

Case:
Vi=- Id1

Case:

ri;fii;x:>l h x : A

but there can be no proof of x : A from T2; (fi2, x:.4); A2.

No case for Idu and Con.

r1;Ü1;(A1,x:C,y:B)l-M:A
Vi = A I

r1;Sl1;(Ai,x:C)\-\y1:B.M:B±A

3.1. STRICT TYPES 36

and
T2;(Ü2,x:C);(A2,y:B)\-M:A

V2 = — A 7
T2; (ft2,x:C); A2 h Ay1 :B. M : B A A

T1;Sl1;{A1,x:C,y:B)\- M : A
r2;(n2,x:C);(A2,y:B)h-M:A
±

By sub-derivation of T>\
By inversion on T>2

BylH

Case: T>i ends in A 7, A 7. The result follows analogously by IH.

Case: Di ends in A E, -» E. The result follows by IH on the leftmost sub-derivation.

Case: V\ ends in A E: there are two sub-cases:

Subcase: AX
M = ip^.ziC

Vx =
(Tu A]y);ni;(^,a;:C) h M : A A £ (r^E^aiC);^; Ajy h 7V : A

Ti-.nx^x-.Ctftf))- M N1 :B
hE

and

2?2

(r2, A^); (fl2,x:C); A2
M h M : A A B (r2, A^); (ft2,x:C); A^ h TV : A

Y2;{ü2,x:C);{A2
M,A2

N)\- M Nl :B

(ruA1
N);n1;(*1

M,x:C) h M : A A 7?
(r,A^);(ft2,z:C);A^hM:.4AB

Subcase: Ajy = ^j^xrC: Symmetrically.

AE

By sub-derivation of X>i
By inversion on X>2

BylH

D

Corollary 3.14 (Exclusivity)

1. It is not the case that both]?; ft; (A,z:C) h M : A and (T, ft, A);x:C; ■ h M : A.

2. It is not the case that both T; (ft, x:C); A h M : A and (T, ft, A); •; x:C \- M : A.

Proof:

1. It is not the case that T; ft; (A, x:C) h M : A and T; (ft, x:C)\ A h M : A
It is not the case that T; ft; (A, x:C) \- M : A and (I\ A); (ft, ar.C); ■ \- M : A-
It is not the case that T; ft; (A,x:C) h M : A and (T,ft, A);x:C; ■ h M : A

2. Analogously.

By Lemma 3.13
By Loosening1 A
By Loosening0 ft

D

We end this section by checking that our strict calculus is a conservative extension of the simply typed
i

A-calculus. We therefore define a forgetful functor from A-* to A-*:

| A Aß| = | A| -> |B|

I o I = a

x | = x

I c I = c

3.2. THE CANONICAL FORM THEOREM 37

Xxk:A.M

\M Nk

\T,x:A

T.,a:type

I Z,c:A

= \x:\A\. \M

= \M\\N\

= |r|,a::|A|
= | £ \,a:type

= \2\,c-.\A\

Theorem 3.15 (Conservativity)
//r;(l;Ah ± M :A„ then\T\,\Ü |,| A| hA-| M | : | A \.

Proof: By induction on the structure of the given derivation. D

3.2 The Canonical Form Theorem

In this section we establish the existence of canonical forms for A-*, i.e. /3-normal 77-long forms, which is
crucial for our intended application. We prove this by Tait's method of logical relations; we essentially follow
the account in [Pfe92], with a surprisingly little amount of generalization from simple to strict types; we do
differ on the account of substitutions.

We start by presenting the inductive definition of canonical forms in A-*. It is realized by the two
mutually recursive judgments depicted in Figure 3.5:

1. T; fi; A h M I A M is atomic of type A.

2. T; O; A h- M ft A M is canonical of type A.

Lemma 3.16 (Soundndess of Canonical Terms) IfT; Q; A h M ft| A, then T;Ü;A\-M:A.

Proof: By induction on the structure of the derivation of T; Q; A h M ftj- A. D

We then introduce conversion to canonical form in Figure 3.6. Note that conversion is not required to respect
the occurrence constraints, provided that we start with a well-typed term:

1. ^ \- M I N : A M converts to atomic form N at type A.

2. iff \- M -ft N : A M converts to canonical form N at type A.

This utilizes weak head reduction, which includes local reduction (ß) and partial congruence (i>):

ß
M Q

{Xxk:A.M)N- k «-'" [N/x]M (M N) k »'"•: (QNf

Theorem 3.17 (Conversion Yields Canonical Terms) // (r, Ü, A) h M ft], N : A and T; Q; A h M :
A, then T; fi; A h N ft| A.

Proof: By induction on the structure of V :: (T, fi, A) h M fti N : A and inversion on the typing derivation;
we show some cases:

Case:
x:A € *

L> = tcldvar
$ h x \.x : A

3.2. THE CANONICAL FORM THEOREM 38

c:A£ S
cldc

T; n; • h c 4. A

 cldu ^ dd1

{Y,x:A);tt;-\- x iA no rule for cLf T;ti\x:A\- x i A

r;ft;AI- Mia

r;n;Ai-Mfra

(r.x:.4);n;Ah M1$B

r;fi;Ah {Xxu:A.M)^AA
c; —> I

B

r-,n-,{A,x:A)\- MfiB
i T

r;fi;Ah (\xl:A.M)1tA^
C->- I

B

r;(fl,i:.4);Ah M it B
o T

T; ft; A I-(Ax0 : AM) ft ^ A 5

r;n;AI-A/|.44B (I\A);ft • hiv-fr A

r;fi;AhMJV"|B
c -» hi

r;fl;AhM4/lAß (r,n,A);-;- i-wiM
0 ,-,

T; fi; A I- M iV° I B
C ->• £,

(r,Aw);fl;AMhM|A4ß (I\AM);H;ANh NftA

r;fi;(AM,AN)hM7VUß ° ~*

Figure 3.5: Canonical forms

c:A € £ a;:A € *
■ tc/dc tcldvar

V \- clc: A <& \- x lx : A

M^W * h M' H M" : a V \- M I N : a
 fr '"'"'? icAt

h M ft M" : a V \-M ft N : a

* I- M xki\N :B V\-MIP:A^B tf h iV ft <2 : A
tc-* I tcA-E

#h Mi\(Xxx:A.N):AA- B ^ \-M Nk \.P Qk : B

Figure 3.6: Conversion to canonical form

3.2. THE CANONICAL FORM THEOREM 39

Subcase:
Id1

Then:

Subcase:

Then:

Case:

V =

T;fl]x:A\- x : A

— eld1

T; Ü; x:A h x | A

 Idu

(T,x:A);Q;-\-x : A

 cldu

(T,x:A);ü;-\-xiA

M'-^M' * V M' ff M" : a

* h M 1T M" : a tC

..*

Case:

T; fi; A h M : a By hypothesis
r; fi; A h M' : a By subject reduction (Theorem 3.10)
r;fi;Ah M" if a By IH

$hM|P:iAß $hAftQ:A
X> = — tc 4 E

* h M Nk iPQk :B

Subcase:
T;Ü;A\- M :A-^ B (T, A); il; ■ h N : A

V = £4£
T; n-A\- M Nu :B

T;fl;A\- PiAAB By IH
(r,A);f>;-hQftA By IH
T;ft;A\- P Qu IB By rule

Subcase: V is £ A £, £ 4 £: analogously.

Since we have to talk about open terms, we will need a notion of context extension:

D

> *',a::^>'i'

Lemma 3.18 (Weakening for Conversion to Canonical and Atomic Form)
// * V- M 1Ü AT: A and *' > *, t/ien * h M U N : A.

Proof: By induction on the structure of the given derivation(s). G

We can now introduce logical relations, in complete analogy with the usual definition for the simply-typed
A-calculus:

Definition 3.19 (Logical Relations)

1. * h M G [a] iff * h M fr N : A, for some N.

2k. $hMe[i4ß] iff for every *' > * and every N, ifV'h N € {A}, then W \- M Nk e {Bj.

3-2. THE CANONICAL FORM THEOREM 40

Lemma 3.20

1. //fhMe [A], then V }- M ft N : A.

2. // * h M IN :A,then^\-M e [A].

Proof: By induction on A.

Case: A = a. Immediate from definition.

Case: A = A-^B.

1. * h M G {A A B]
$,x:A > *
{V,x:A) h xix: A
(V,x:A)\-x€ [A]
(V,x:A)hM xk G [5]
(V,x:A) \- M xk ilN :B
V\-M1t\xk:A.N :A^B

2. *hM|M+:44ß
*' > * and *' I- N G {A}
V'hN1fN+:A

*' f- M Nk 1 M+NX : B
f'hlJV^ [B]
*i-Me[iAßj

Lemma 3.21 (Closure under Head Expansion)

IfVhM'e [A] and M ^J M', then F; 0; A h M e [A].

Proof: By induction on A:

Case: A = a; immediate by definition and rule tc ^A.

Case: A = A A B:

*KM'e[AAs]
$' h A G [i4] for 9' > *
' h M' TV G [A]

(Af N)k "^A (M' A)*
¥' h M Afc G [i4]
* h M G [A A J5]

By hypothesis
By rule
By rule
ByIH2

By definition of [•]
BylHl
By rule

By hypothesis
By assumption

BylHl
By Lemma 3.18

By rule
By IH 2

By definition of [•]

D

By hypothesis
By assumption

By definition

By rule v
BylH

By definition

D

Due to the need to /3-reduce during conversion to canonical form, we need to introduce substitutions.
Differently from [Pfe92] and [Cer], we will not require substitutions to be well-typed.

Substitutions 6 ::=e\9, M/x

For 6 = 9', M/x, we say that x is defined in 0 and we write 0{x) = M. We require all variables defined in a
substitution to be distinct: we use dom(ö) for the set of variables defined in 6 and cod(Ö) for the variables
occurring in the substituting terms. We assume them to be disjoint.

3.2. THE CANONICAL FORM THEOREM 41

Next, we define the application of a substitution to a term M, denoted [d]M. We limit application of
substitution to objects whose free variables are in the domain of 0:

[9)c = c

[0}x = 8(x)

[0]{M Nk) = ([0]M) {[0}N)k

[0}{\Tk:A.M) = \xk:A.[6,x/x]M

Note that in the lambda case we can assume with no loss of generality that x does not occur in dom((9)Ucod(6>).
We will also need to mediate between single-step substitutions stemming from /3-reduction and simulta-

neous substitutions. We define how to compose single step bindings from a ß reduction with simultaneous

substitutions:

[N/x]c = e

[N/x}0 = [N/x]6,([N/x]M)/y

a
Lemma 3.22 [[N/x]6]M = [N/x]({0}M).

Proof: By induction on the structure of M.

Corollary 3.23 Assume x to be fresh in 8: [N/x]{[6,x/x]M) = [0,N/x}M.

Proof:

[N/x]{[e,x/x])M = By hyp°thesis

[[N/x}(0 x/x)])M = By Lemma 3-22

[\N/x]8, \[N/x]x)/x)])M = By composition of substitution
\0 Nlx\M By application of substitution and x fresh

D

For a context * = xi-.Ai,,.. .,xn:An, we introduce the identity substitution on $ as id* = xi/xi,.. .,xn/xn.

Lemma 3.24 (Identity Substitution) // T; ft; A h- M : A, then [id(r^,A)]M = M.

Proof: By induction on M.

We extend the notion of logical relations to contexts, exactly as in the simply typed case: a substitution
8 is in the relation [*] if for every binding M/x such that x:A is in $, then M is in {A].

Definition 3.25

1. $i-0e[-] iffB = e.

2. $t-9el{9,x:A)] iff B = 6', M/x, $ I- M € \A] and $ h 9' € [*].

We remark that contexts are not ordered, hence, for * = (I\ ft, A) we will identify, for example, [*, x:A]
with[(r,x:A,ft,A)J.

Lemma 3.26 (Weakening for Logical Relations) If 9 \-9 e [A], then {V,x:A) h 9 € [A].

Proof: By induction on the structure of the given derivation. D

Lemma 3.27 (Well-typed Terms are in the Logical Relation) // T; ft; A r- M : A, tfccn /or every $
sttcA Öio« $ h 0 € [(I\ft, A)], $ H [0]M G [A].

Proof: By induction on the typing derivation V :: T; ft; A h M : A:

3.2. THE CANONICAL FORM THEOREM 42

Case:

Case:

Case:

Case:

Case:

V =
(T,x:A);ü;- h- x : A

Idu

$h0e[(i>:A,ft)]
$ h 9{x) G [A]
$ h [0]x € [4]

By assumption
By definition of [•]

By definition of substitution

V = -
T;ü;x:Ahx:A

Id1

$ h 9{x) e M
$ h [9}x 6 [A]

By assumption
By definition of [•]

By definition of substitution.

V =
c:A£ £

r;fi;-hc:4

Immediate by Lemma 3.20 and definition of substitution.

Con

V = -
(T,x:A);Sl;Ah- M:B

T;Q-Ah\xu:A.M:A^B

(r,x:A);ü;A\-M :B
$i-0e[(r,n,A)]
$' > $ and $' h iV e [4]
$'h(ö,iV/a;)eI(r,x:A,n,A)]
$' I- [9, N/x]M € [ß]
9'h[N/x]([6,x/x]M)e[B]
$' h (Aa:u:A[ö,a:/a;]M)7Vu £ [B]
#' h ([0](Azu:AM))iVu € [B]
$h[6>](A:ru:AM) e[4Aß]

By sub-derivation
By hypothesis

By assumption
By definition of |-J and Weakening (Lemma 3.26)

BylH
By Corollary 3.23

By Lemma 3.21
By definition of substitution

By definition of [A A B]

Case:

v = -
T;(Ü,x:A);Ah M : B

r;n;AI- Xx°:A.M:A Aß
A/

T;(n,x:A);A\-M : B
$höe[(r,n,A)]
$' > $ and $' h iV e [A]
$'h(0,JV/z)€[[(r,fi,:r:.4,A)]
*' h [0, 7V/x]M € [£]
$'h[JV/a;]([ö,s/a:]M)e[B]
*' h (Xx°:A.[6,x/x}M)N° <E [B]
$'h([0](Azo:AM))JVoe[B]
$h[0](A:ro:AM) € [A A B]

2?

By sub-derivation
By hypothesis

By assumption
By definition of [•] and Weakening (Lemma 3.26)

BylH
By Corollary 3.23

By Lemma 3.21
By definition of substitution

By definition of {A A B]

T;ü;(A,x:A)h- M : B

T;n;AhXx1:A.M:A^B
A/

3.2. THE CANONICAL FORM THEOREM 43

r;fl;(A,i:i)hM:ß
*h0e[(r,n,A)]
$' > $ and $' h JV € [4]
$'h(0,JV/x)e[(r,fi,A,x:A)J
*'h[ö,iV/i]M€[ß]
$'h[iV/x]([Ö,a;/a;]M) Giß]
VV{\xl:A.{6,xlx]M)Nl G [ß]
S'hflöKAa^AM))//1 € Jß]
$'h[0](A:c1:AM)G JA Aß]

By definition of

By sub-derivation
By hypothesis

By assumption
and Weakening (Lemma 3.26)

By IH
By Corollary 3.23

By Lemma 3.21
By definition of substitution

By definition of {A A ß]

Case:

X> =

$höe[(r,n,A)]
r;fi;AhM:i4ß
$ h [6}M £[iAB]
(r,A);n;-hJV:>4
$ h [6}N G [A]
$ > $
$ h ([0]M)([0]AOU G [SI
$ I- [0](M iV)u G Iß]

T; ft; A h M : A A ß (r,A);ft;-l-JV:A

r;ft;Ah MiVu :ß
ß

By hypothesis
By sub-derivation

BylH
By sub-derivation

BylH
By rule

By definition of [•]
By definition of substitution

Case:
r;n;AhM:4Aß

v =
(T,n,A);-;-\-N:A

*höe[(r,n,A)]
T;ü-A\- M :A-%B
$ h [ff\M G [A A ß]
(r,rt,A);-;-l-JV:^
$ h [0]JV G [A]
$ > $
$ h ([0]Af)([0]AO° G
$ h [6>] (M N)° G Iß]

r;(];AhM W° :ß
Aß

By hypothesis
By sub-derivation

BylH
By sub-derivation

BylH
By rule

By definition of [-J
By definition of substitution

Case:

V
(r, AN); (l;AMhM:i4ß (I\ AM);Ü; AN \-N : A

T;n-(AM,AN)\-M N1 : B

(r,AN);n;AM)-M:A±B

$ h [0]M G [A A ß]
(r,AM);n;Awr-7V:>l
$ h JV G 1^4]
$ > $
$ h ([6>]M)([Ö]AT)1 G
$ h [0](M iV)1 G Iß]

£

By hypothesis
By sub-derivation

BylH
By sub-derivation

BylH
By rule

By definition of [•]
By definition of substitution

D

Lemma 3.28 * h id* G

3.3. RELATED WORK ON STRICTNESS 44

Proof: By a straightforward induction on $ using Lemma 3.20(2). D

Theorem 3.29 (Canonical Form Theorem) IfT;ü;A h M : A, then there is N such that (T,tt, A) h
M H N : A andT;Ü-A\- N it A.

Proof: Assume r;fl;il-M:A By Lemma 3.28 (I\fi,A) I- «<i(r,fi,A) € [(L, fi,A)], hence, by Lemma
3.27 (I\ft,A) h [id{r,nA)]M € {A] and thus by Lemma 3.24 (T,ti,A) h M 6 \A\\ by Lemma 3.20(1),
(r, ft, A) h M ft- A : A for some A. Additionally, by Theorem 3.17(2) r; ft; A V N U A. D

We shall abbreviate the statement of the canonical form Theorem as T; Q; A \- M -ftl A.

We will also need the typing and the canonical form rule for existential variables. We use $ for arrays of
(distinct) labeled bound variables; if xk € $, we set $(x) = A;. We say that T; ft; A h $ ok if the following
holds:

$(z) = u -H- x € dom(r)

$(x) = 0 «-> a; € dom(ft)

$(x) = 1 «-> a; € dom(A)

Moreover, if T; fi; A (- M : A and T; fi; A h $ ofc we may write r$n V M : A. We assume that the type A in
Eyi is well-behaved w.r.t. $.

T; fi; A h $ oifc T; fi; A h J5^ $: a
■ Pat cPat

T-,n;A\-EA $:a T;Ü;A\- EA $ la

Remark 3.30 Exclusivity (Lemma 3.13) holds for open patterns as well.

Proof: Assume that both T;ti;{A,x:C) \- E $: A and F; {il',x:C); A' 1- E $: A. Then r;fi;(A,z:C) 1-
$ oA; and T; (fi',a;:C); A' h $ ofc iff $(1) = 1 and $(x) = 0, impossible. □

3.3 Related Work on Strictness

Church original definition of the set Aj of (untyped) A-terms [Chu41] has this clause for abstraction:

If M £ A/ and x € FV(M), then Ai.ME A/.

i.e. in this language there cannot be any vacuous abstractions. It can be shown that the only difference
between A/ and A - the usual definition of A-terms - is the lack of the combinator K. Indeed, it can be
shown that every term in A can be defined from A/ and K. The AJ-calculus is the theory of conversion
restricted to A/ terms. This fragment was favored by Church over the nowadays usual calculus, because,
among other issues, it is strong enough to represent every partial recursive function, albeit not in the most
efficient way: see [Bar80] Chapter 2.2.2 — 2.2.5 and more extensively in Chapter 9. See [GdQ92] for an
historical account.

This would correspond in a simply typed setting to allowing only strict types: more formally if we denote
k k 1 u

with A~* the terms typable in a Curry system based on the -> function space, then A-* = A-* n A/, as noted
for example in [BF93].

The combinatory counterpart of this calculus obviously excludes K and consists of I, W, B, C, see [CF58]
and [Bar80], Appendix B for an alternative basis. Those are the axioms of what Church called weak impli-
cational logic [Chu51], i.e. identity, contraction, prefixing and permutation. This establishes the link with
an enterprise born from a very different origin.

The relevance logic project emerged in fact in the early sixties out of Anderson and Belnap's dissatisfaction
with the so-called 'paradoxes of implication', let it be material, intuitionistic or strict (in the modal sense of

3.3. RELATED WORK ON STRICTNESS 45

Lewis and Langford); it was built on the work of Moh, Church, Parry in the fifties1 and climaxed with the
publication of the first volume of Entailment [AB75] (the second one was published only in 1992 [AAB92]).
Following Girard's and Belnap's [Bel93] suggestion, we will not refer to our calculus as relevant, but as strict
logic, as the former may also satisfy other principles such as distributivity of arrow over conjunction.

On an unrelated front, starting with Mycroft's seminal paper [Myc80], compile-time analysis of functional
programs concentrated on strictness analysis in order to get the best out of call-by-value and call-by-need
evaluation; first in terms of abstract interpretation, later by using non-standard types to represent these
'intensional' information about functions (see [Jen91] for a comparison of these two techniques). However,
earlier work as [TMM89] used non-standard primitive type to distinguish strict or non-strict terms, closed
only under intuitionistic implication. Not forgetting Wadler's early paper [Wad90] on using linear logic for
sharing analysis, Wright [Wri91, Wri92] seems the first one to have extended the Curry-Howard isomorphism
to (the implicational fragment of) relevance logic and explicitly connected the two areas, although both
[Bel74] and [Hel77] had previously recognized the link between strictness and relevance2.

In [BF93] the author summarizes the above-mentioned idea of expressing via types the reduction behavior
of terms. He characterizes in an operational sense the class of terms which need their argument, the idea
being that not only each terms need to be strict, but so does the result of each application. M is not strict
if for all N no descendant of N is in the normal form of M N. This class is then shown to be equivalent to
the Curry-typable fragment of A/.

We now discuss the Curry typing system proposed there, which makes available strict, invariant and
intuitionistic types: yet, it is biased towards inferring strictness information, which ultimately lead to a
difference of expressive power from our calculus. Some rules are presented in Figure 3.7 - we omit the
introduction rules which are as expected - transliterated in our notation. There is only one context, where
variables carry their occurrence status as a label. Being a term assigment system, there are no different
abstractors or applicators, but different rules. Note that there is only one identity rule, the strict one,
so that e.g. Xx. x : A A A is not derivable, as it can be given the more stringent type A —> A. Let
us concentrate on the elimination rules: the side condition enforces the information ordering, so that for
example A' A B < A A B', provided that A < A',B < B'. This allow to infer by strict application
T,T' \- M N :C from r h M : (A A B) A C and T' h A A B. The latter is instead forbidden in our system
by the labeled reduction rules. The rationale on the substitution operation on context is that in app A
A is not relevant to B, so all hypothesis should be deleted. Instead, in order to preserve every variable
declaration, their strict label is changed into irrelevant. This would amount to moving the strict variables in
the irrelevant context in our system. Note the difference with our rule, where the latter variables are moved
in the undetermined context. Similarly in app A strict labels turn into undetermined. Moreover, having only
one context, the author needs a strategy to deal with same binding with different annotations; the solution
is that while propagating premises top-down a binding xx:A supersedes xu:A which in turn supersedes x°:A.

The author goes on (see also [WBF93]) detailing a system which refines the strict calculus by allowing to
count usage, motivated by sharing analysis; thus A A B denotes a term where A is used i times to infer B.
Undetermined usage is then added via dummy variables. This unfortunately leads to an undecidable type
checking problem.

In [Wri96] Wright introduces an Annotation Logic as a general framework for resource-conscious logics.
The annotation logic has formulae/types of the form

A ::= Xk | A A B

for any annotation k and has structural and connective rules as well as annotation ones:

r\-A{ T,A1\-B
■ *k \-k

Tk h Aik T, Ai+k h B

The latter implement rules such as promotion/dereliction. By instantiation with different algebras of anno-
tation, we get systems as linear, strict logic as well as various other usage logics. An abstract normalization

'Some early work in the twenties in the Soviet Union was, at the time, not accessible.
2 Note that we have became aware of this literature only after having fully developed our calculus which was modeled after

the two-zoned linear logic calculus.

3.3. RELATED WORK ON STRICTNESS 46

r[i:= 0], x
l:A\- x : A

uur

T\- M :A4 B V \- N .A1

r,r' \-M N:B

T\- M :AA B V \-N :A'

r,r'[i:= = 0] h M N :B

Vr M :AA B r' \-N :A'

app —>

app

■ app —t
r,T'[l := u] \- M N:B

All elimination rules have the condition A' < A

Figure 3.7: The system in [BF93]

procedure is sketched, which however needs commutative conversions (e.g. the case contraction/arrow elimi-
nation) already in the purely implicational fragment. Another problem is that properties as loosening should
in our opinion be admissible rather than primitive rules.

Bunched Implication

In a series of papers Pym et at. (see [Pym99] and references therein) introduce a first-order and its corre-
spondent dependent type calculus which aim to couple multiplicative and addititive implication. The two
are distinct by allowing two different constructors for contexts which are called "bunches". This is differ-
ent from a zoned calculus as bunches can be nested. As expected, contraction and weakening are allowed
for additive assumptions but not for multiplicative ones. The resulting logic can be seen as variant of rel-
evant logic, as there is no requirement that an argument to a multiplicative function must be used only
once, but only that it should not share with other variables in the (proof) term. Thus, in out terminology
A 4 ((A A- A 4 B) 4 B) is derivable, but not A 4 {{A 4 A 4 B) 4 B). Moreover, the logic allows
additive conjunction to distribute on additive disjunction, which is not allowed in multiplicative additive
intuitionistic linear logic. Its naturality should follow from its categorical semantics. Its correspondent
dependently-typed calculus, dubbed RLF is proposed as a resource conscious conservative extension of LF.

Relevant Logic Programming

In [Bol90] the author presents his approach to relevant, i.e. in our terminology strict logic programming as
part of his dissertation on 'Conditional Logic Programming' [B0I88]. He makes a (weak) case for its utility
in applications such as planning and diagnosis, whose hypothetical queries should indeed use their premises.
The system boils down to a strict version of N-Prolog. Unfortunately the author was only partially aware
of Girard's work on linear logic, and entirely not aware of the notion of uniform proof [MNPS91], although
he gives a brave attempt to a mainly proof-theoretic approach: thus, as Gabbay and McCarthy before,
he embarks on an awfully complicated and low-level description of an interpreter which enforces the usage
requirement, for, I think, the following fragment; note that there are two conjunctions: & is additive and A
multiplicative.

Assertions A ::= P \ Q 4 P | Ai&A2 \~ix.A

Queries Q ::= P \ Ql A Q2 | Qi V Q2 | A 4 Q | 3x . Q

If we were formulating a strict logical framework in the sense of [Cer96], the former system would therefore
be a strict (no pun intended) subset of the latter.

Chapter 4

The Relative Complement Problem
for Higher-Order Patterns

We introduce in the next Section 4.1 a restriction of the language for which complementation is possible
(Section 4.2). Moreover, in Section 4.3 we will give an unification algorithm for this fragment. Section 4.4
shows how the former operations induce a boolean algebra over finite sets of terms.

4.1 Towards Term Complementation

Now that we have developed a calculus which is potentially strong enough to represent the complement
of linear patterns, we need to answer two questions: how do we embed the original A-calculus, and is the
calculus now closed under complement?

We reiterate that we require that our complement operator ought to satisfy the usual boolean rules for
negation:

1. (Disjointness) It is not the case that some M is both a ground instance of N and of Not(TV).

2. (Exhaustivity) Every M is a ground instance of N or of Not(N).

Unfortunately, while the first property follows quite easily from Corollary 3.14, it turns out that exhaus-
tivity does not hold in general in the presence of intuitionistic application. In fact, consider the application
y xu; while it is clear that T \- y xu £ \\E xu yu\\, it is not the case that Y h y xu £ \\E x1 yu\\ or
Y\-yxue \\Ex° yu\\.

However, the main result of this Chapter is that the complement algorithm presented in Definition 4.13 is
sound and complete for the fragment which results from the natural embedding of the original simply-typed
A-calculus; this is sufficient for our intended application. We will proceed in two separate phases:

• Restrict to a class of terms (that we call simple) for which the crucial property of tightening (Lemma
4.5) can be established, yielding exhaustivity as a corollary.

• Bring simple terms to 'full application'.

4.1.1 Simple Terms

Recall that we have introduced strictness to capture occurrence conditions on variables in canonical forms.
This means that first-order constants (and by extension bound variables) should be considered strict functions
of their argument, since these arguments will indeed occur in the canonical form. On the other hand, if we
have a second order constant, we cannot restrict the argument function to be either strict or vacuous, since
this would render our representations inadequate.

4.1. TOWARDS TERM COMPLEMENTATION 48

Example 4.1 Continuing Example 2.6, consider the representation of the K combinator:

rXx.Xy.x~[= lam (Xx:exp.lam (Xy.exp.x))

Notice that the argument to the first occurrence of ' lam' is a strict function, while the argument to the
second occurrence is an invariant function. If we can give only one type to ' lam' it must therefore be
(exp A exp) —> exp.

Generalizing this observation means that positive occurrence of function types are translated to strict
functions, while the negative ones to undetermined functions. We can formalize this as an embedding of
the simply-typed A-calculus into a fragment of the strict calculus via two (overloaded) mutually recursive
functions ()~ and ()+. First, the definition on types:

(A -¥ B)+ = A~ 4 B+

(A-+B)- = A+^B~

a~ = a+ — a

We extend it to canonical terms (including existential variables), signatures, and contexts; we thusly need
the usual inductive definition of canonical terms in the simply-typed A-calculus, which can be obtained by
dropping labels (Theorem 3.15) from the definition of canonical form in Figure 3.5. Note that embedding
only canonical forms rules out the case of '+-ing' a lambda expression, as well as '—ing abstractions and
non-atomic h € dom(rUS.

for M of base type

(Xx:A.M)~ = Xxu A+.M-

M- = M+ i

x+ = X

c+ = c

(EA X!...Xn)+ = FA- xl ■ ■-xn

(M N)+ = M+ (AT-)1

(•)+ = •
(T,x:A)+ = T+,x:A+

(E,a:type)+ = E+,a:type

{Z,c:A)+ = S+,c:A+

Example 4.2 Coming back to Example J^.l:

(lam (Xxiexp.lam (Xy:exp.x)))+ = lam (Xxu-.exp.lam (Xyu:exp.x)1)1

The image of the embedding of the canonical forms of the simply-typed A-calculus gives rise to the
following fragment:

Simple Terms M ::= Xxu:A+. M | (... (ft Mxf ...Mnf \ (... [EA- Xl)
u .. .xn)u

We often abbreviate (... (ft Mi)1... Mn)1 as ft M^; similarly we shall use FA- x%. Note that, by the use of
77-long /3-normal forms, such terms, as well as pattern variables, must be of base type.

To prove the correctness of the embedding (Theorem 4.4), we will need the following:

Lemma 4.3 If T \- EA x^ : a, then T+; •; • h FA- x% : a.

Proof: A straightforward induction on A. D

Theorem 4.4 (Correctness of ()±)

4.1. TOWARDS TERM COMPLEMENTATION

1. IfTh MftA, thenr+;-;-\- M- fiA-.

2. IfT\- M I A, thenr+;-;-\- M+ IA+.

Proof: By mutual induction on the proofs of Pi ::T\- M ft A and V2 :: T h M I A.

Case:

c:A e S
T>2 — atmCnst

T\-ciA

Since c+ = c and E+(c) = A+ we conclude

1 " 1 ' hc+ IA+
cldc

Case:

49

V;
{T,x:A) \-xlA

Since x+ = x and r+(x) = A+ we conclude

■atmVar

Case:

{T,x:A)+ hx+ IA^
c/d"

V2 =
r h M 1 B ->■ .4 rh A^frß

r h M TV I A
atmApp

T\- M IB -> A
r+;- • 1- M+ I (B -> .4)+
r+

;- •hM+4-ß- ±A+
r\- NftB
r+;- ■\-N- ftB~
r+;- ■ h M+ (JV-)liA+
r+;- • 1- (M JV)+ IA+

Case:

Case:

T\- E A xn '. a
r+;s \-FA- K :a
r+;-; hFA- xlia
r+;-; ^{EA %n) '• a+

r h EA xn : a
L>2 — — canPat

T\- EAx^ \,a

T\-M la
T)\ — canAtm

T\- Mfta

By sub-derivation
By IH2

By the embedding
By sub-derivation

By IH 1
By rule c -4 E

By the embedding

By sub-derivation
By Lemma 4.3

By rule cPat
By the embedding

T\- M la
r+;- ; • 1- M+ I a+
r+;- ; ■ h M+ ft a+
r+;- ;• h M~ ft a~

By sub-derivation
ByIH2

By rule cAt
By the embedding

4.1. TOWARDS TERM COMPLEMENTATION 50

Case:

2>i=-
T,x:A\-Mi[B

T\- Xx:A.Mi\A^B
canLam

T,x:A\- M-ftB
{T,x:A)+ \-M~^B-
(r+,a;:^+)l- M~ ft B~
r+;-j-h \xu:A+.M1\A+ 4ß"
r+; •; • h (Xx :A.M)~1t(A->B)-

By sub-derivation
BylHl

By the embedding
By rule c4J

By the embedding

D

From now on we may hide the Q1 decoration from strict application of constants in examples. Moreover,
for every judgment J on simple terms, we will shorten 17; •; • h J into T\- J.

We can now prove the crucial tightening lemma. It expresses the property that every closed simple term
is either strict or vacuous in a given undetermined variable.

Lemma 4.5 (Tightening) Let M be a closed simple term:

1. If (r, x:C); ft; A t- M 1 A, then T; ft; (A, x:C) \- M 1 A or T; (ft, x:C); A h M 1 A.

2. If (r, x:C); ft; A h M ft A, then T; ft; (A, x:C) \- M ft A or T; (ft, x:C); A h M fr A.

Proof: By mutual induction on I?! :: (r,z:(7);ft; A h M 4, A and T>2 :: (r,z:C);ft;A hMfA

Case:

Then

Pi

5 =

de £
(T,x:Cy,n-,-\-ciA

c:A€ E

r;(ft,a;:C);-l-c|A

cldc

cldc

Case:
V, =

(T,x:C,y:A);Ü;-\-ylA
cldu

Then
£ = ■

(r,y:A);(n,x:C);-\-ylA
cldu

Case:
X»i

(r,x:C);ft;-ha;4.C
■cW

Then
£=■

Case:

Then

Case:

Pi=-

£=•

X>o

 c/d1

T; ft; x:C h a; 1 C

(r,a::C7);n;ff:i4l-y4.A'

r;(ft,x:C);2/:^h2/|A'

(r,rC);0;AI-MJ.o

(r,x:C);ft;AhMfra'

Id1

Id1

■cAt

4.1. TOWARDS TERM COMPLEMENTATION 51

(r,x:C)-,n;A\- M la
T; ft; (A, x:C) hMjoorT; (ft, x:C); A I- M 1 a

Subcase: T; ft; (A, x:C) hMja
r;ft;(A,x:C)l-Mfta

By sub-derivation
BylH 1

By assumption
By rule cAt

Subcase: T; (ft,x:C); A h M 1 a
r;(n,rC);Ah¥ta

By assumption
By rule c.4*

Case:
(r,x:C,j/:X);n;AI-Mft.B

2?2= c
(r, x:C); ft; A h (Ay": A. M) ft .4 A B

{Y,x:C,y:A);Sl;A\-M^B
(r, 2/:A); ft; (A, x:C) h M ft B or (r, y:A); (ft, x:C); A h M ft

5u6ca5e: (r, y:>4); ft; (A,x:C) h M ft B
T; ft; (A, x:C) h (Aj/U :AM)|AAß

By sub-derivation
By IH2

By assumption
By rule c A-1

Subcase: (T,y:A); (ft, x:C); A h M ft: symmetrical

Case:
(I\a;:C,AAr);ft;AM hM|i4fi (r,i:C, AM);ft; AN h A ft A

2>i = ■ c 4 £
(r,x:C);ft;(AA^AN)hM^Uß

There are four sub-cases, stemming from IH 1 and 2:

1. (r,ANy,n-(AM,x:C)\-MlA±B
(XAM);tl;(x:C,AN)hN1tA
(r;AM,x:C);ft;AwhiVft^
T; ft; (AM, X:C, AN) \- M N1 I B

By assumption
By assumption

By Loosening1 x
By rule

2. (r, AAT); (ft, x:C); AM \~ M I A A- B
(T,AM);(n,x:Cy,ANhNiiA
T; (ft,x:C); (AM, A*) h M N1 I B

By assumption
By assumption

By rule

3. {T,AN);ü;{AM,x:C)V- M I AA B
(r,AM);(ft,*:C*);A/vh7VlM
(r,x:C,AN);ft;AMHiVft^
T; ft; (AM,x:C, AN) ^ M N1 ± B

By assumption
By assumption

By Loosening0 x
By rule

4. Symmetrical to 3.

a

We remark that tightening fails to hold once we allow non-simple terms, namely intuitionistic application.
For example y.A A B, x:A; •; • h y xu : B but both y.A AB;-; x:A \f y xu : B and y.A A B; x:A; • \f y xu : B.
This suggest that simple terms are not only a useful technical device to achieve term complement in the
simply-typed case, but possibly for other more general calculi such as the linear A-calculus.

Corollary 4.6 Let M be a closed simple term such that T;ü; A \- M ftj. A; then there are A',ft' such that
r = A', ft' and •; (ft, ft'); (A, A') h M ftj. A.

Proof: By induction on T, using Lemma 4.5. D

4.1. TOWARDS TERM COMPLEMENTATION 52

n = dom(r)\ | $ |
•TrnPat

r h E $u <—► z $" n°

ri-Axu:AM<—>Ax":AiV
■TrnLam

TrnApp
r i- h MI <-► ä JVi

Figure 4.1: Full application translation: T h M «—> N

4.1.2 Full Application
We can simplify the presentation of the algorithms for complement and later unification if we require any
existential variable to be applied to every bound variable in its declaration context. This is possible for any
simple linear pattern without changing the set of its ground instances. We just insert vacuous applications,
which guarantees that the extra variables are not used. In a slight abuse of notation we call the resulting
terms fully applied.

We describe in Figure 4.1.2 the judgment T \- M <—> N which turns a term M into an equivalent fully
applied term N: while we need this translation specialized to simple terms, it is clear how to generalize this
judgment to the canonical forms of any strict term.

Example 4.7 Recall the simple term from Example 2.8:

lam (Xxu: exp. app E x)

has fully applied form
lam (\xu:exp.app (Z x°) x)

for a fresh existential variable Z of type exp —> exp.

We may check the the output of the translation is indeed fully applied w.r.t. its definition in Figure 2.3:

Lemma 4.8 // M is a simple term and Y\- M <—> N', then T \- N f.a. .

Proof: A straightforward induction on the structure of the given derivation. D

We have now arrived to the following language, where the labeling on flexible patterns is unrestricted,
still called "simple terms":

Simple Terms M ::= \xu:A+. M \ (... (h Mi)1.. .Mn)1 | (... (E x'^).. .xl»)

To prove the set-theoretic adequacy of the translation, we will need the following irrelevance Lemma.

Lemma 4.9 (Irrelevance) If M is a closed simple term, then:

1. //r;(fl,i:C);AhMti, then Y;tt; A h M ft A.

2. J/r;(n,a;:C);Ah M I A, thenT;Ü;A\-MiA.

Proof: By mutual induction on Vx :: T; (fi,x:C); A h M \ A and T>2 :: T; (fi,x:C); AhMfA

Case: , „
_ c:A € E
£>i = cldc

r;(n,x:C);-hclA
Then

S = cldc
T;ü;-\-ciA

4.1. TOWARDS TERM COMPLEMENTATION 53

Case:

Then

Case:

Then

Case: V2 ends in cAt: by IH 2.

Case:

Vi = cldu

{Y,y:A)-{ü,x:C);-hyiA

£ = ddu

(T,y:A);n-rhyiA

Vi = eld1

r;(Q:x:C);y:A\-ylA

£ = eld1

T;n-y:A\-yiA

(r,y:A);(n,x:C);Ah-Mi\B
V2 = c A I

T; (fi, x:C); A h (Xyu :A.M)tAAB

{T,y.A);(Q,x:C);A \- M i\ B By sub-derivation
(T,y:A);Sl;A\-MitB By IH 2
T;Ü;A^ (\yu:A.M)1\A± B By rule

Case:
(r, AN); (fi, x:C); AWI-MM4B (I\ AM); (n,a::C); A* h N ft A

V2 = c 4 E
r;(n,x:C);{AM,AN)\- M N1 IB

(r, AAT); (fi, x-.C); AM \- M i A-^ B By sub-derivation
(T,AN);n;AM\- M IA±B By IH 2
(r, AM); (fi, a;:C); Aw h iV ft- A By sub-derivation
(T,AM)-n;AN\-N-(\A BylHl
r;n;(AM,A/v) hi iV1 IB By rule

D

Note that irrelevance holds for any strict canonical terms, but it is false for terms containing redeces.
For example •; x:A; ■ \- (Xy°: A. c) x° : B, as x becomes unbound in the rightmost premise, but •; •; • 1/ (Ay0:
A. c) x° : B.

Ground Instances

We recall that we assume every type to be inhabited, so that every term can be seen as the intensional
representation of the set of its ground instances. The judgment in Figure 4.2 V h M € ||iV|| : A formalizes
conditions for M to be a ground instance of a simple linear term N at type A. We then extend the judgment
to sets of terms of the same type as follows:

3i:l < i < n T \- M 6 ||Nj|| : A
 Sri

ThMG \\NX ■ ■ ■ Nn\\ : A

Remark 4.10 * h M <E \\EA $|| : a iff M I t $ and ■ \- t : A iff t = A$. S and if T; fi; A h $ ok, then
r;fi;AhS:A

This fact will be heavily used in the following.

4.1. TOWARDS TERM COMPLEMENTATION 54

Af 4.t§ \-t:A

T\- M £ \\EA $|| : a

(T,x:A)\-Me\\N\\:B

■grFlx

— grLam
T\- Xxu:A.M £ \\Xxu:A.N\\ : A A B

rh/i:44a r h Mi 6 IIJViH : M ■ ■ ■ T h Mn 6 \\An\\ : An

r h h M € \\h Ml : a
■grApp

Figure 4.2: Ground instance: T h M € ||iV|| : A

Lemma 4.11 (Ground Instance Weakening) IfT h M € ||iV|| : A i/ien (r,z:A) h M G

Proof: By induction on the structure of the given derivation.

:A.

D

We implicitly use the above lemma to weaken different contexts with common basis to an unique one.

Now we can prove that the the full application translation preserves the set of ground instances.

Theorem 4.12 (Adequacy of the Full Application Translation) Let N be a simple term of type A,
such that r\-N ^Q;thenThM € \\N\\ :AiffT\-Me \\Q\\ : A.

Proof: By induction on the structure of V :: T h M
T \-M £ \\Q\\ : A.

N and inversion on T h M G A and

Case:

V =
0 = dom(r)\ | $

T\-E $" z$u n°
■TrnPat

(->) r h M G \\EB *
U
|| and n = dom(r)\ | $ |

M 11 $u and • h i : ß for $; •; • h $" ok
$;•;•!-5: A
$;fi;-r-S:i4
M 4 f $un° for -l-f:B' and $; Q; • h ($", ft0) ok
r h M € ||FJJ» $uft°||

(«-) r h M G ||FB» $"ft°|| and ft = dom(r)\ | $ |
Mit' $"ft° for • h t' : 5' and $; ft; • h ($«, 0°) oA;

By assumption
By inversion

By Remark 4.10
By Weakening0

By Remark 4.10
By rule

By assumption
By inversion

By Remark 4.10
By the canonical form Theorem

By Irrelevance (Lemma 4.9)
By soundness (Lemma 3.16)

By rule and Remark 4.10

Case: V ends in TrnLam or TrnApp: the result follows from a straightforward application of the inductive
hypothesis.

D

From now on we tacitly assume that all simple terms are fully applied. We call a term Exl± .. .xl™ a
generalized variable.

$ ft;-hS: A
$ ft;-hSftM
$ •\-\-S1tlA
$ ■;-\-S:A
r \-M e \\EB $

U

4.2. THE COMPLEMENT ALGORITHM 55

4.2 The Complement Algorithm

The idea of complementation for applications and abstractions is quite simple and similar to the first-order
case. For generalized variables we consider each argument in turn. If an argument variable is undetermined
it does not contribute to the negation. If an argument variable is strict then any term where this variable
does not occur contributes to the negation. We therefore complement the corresponding label from 0 to
1 while all other arguments are undetermined. For vacuous argument variables we proceed dually. If
T = xi:Ai,... ,xn:An, we write E Yu for the application of £ x\u .. .xn

u. Such an application represents
the set of all terms without existential variables and free variables from T.

In preparation for the rules, we observe that the complement operation on terms behaves on labels like
negation does on truth-values in Kleene's three-valued logic, in the sense of the following table:

Not(l) = 0

Not(O) = 1

Not(u) = u

Note that these labels form a three-valued semi-lattice with the (reverse) partial information ordering 1 <
u,0 < u.

Definition 4.13 (Higher-Order Pattern Complement) Fix a signature £. For a linear simple term
M such that Y \- M : A define Y h Not(M) =» N : A by the following rules:

3i:l<i<n fce{l,0}
 NotFlx
T h Not(£ s*' ... x^ x\ x^ ... i*») => Z x? ... x»_x x"ot(k) x?+1 ... < : a

no rule for k = u

r,z:.4hNot(M) =» TV : B
 NotLam
r h Not(A:ru : A. M) => \xu : A. N : A A B

jgSur,j:ii -4 ... A Am Ao m>0,h^g

Y h Not(/i Ml) =>(... (g (Zi T"))1 ... (Zm T"))1 : a

3i:l <i<n fh Not(M,) => N : A{

NotApp1

NotApp2

r h Not(A M\) => (... (h {zx r"))1... (Zt.! r")1 N
1
 {zl+x r")1... (zn Y

U
)Y ■. a

where the Z 's are fresh logic variables of appropriate typing, /i€ SuT and Y V- h : A\ —> ... —> An -> a.
Note that a given M may be related to several terms N all of which belong to the complement of M. Finally
we define Y h Not(M) = N : A if Af = {N \Y \- Not(M) => N : A}.

We may drop the type information from the above judgment in examples and proofs; we will write
r h M € ||Not(7V)|| : A, when Y h Not(N) = M and Y h M € \\M\\ : A.

Note that if EA is a generalized variable considered in the empty context, it has the canonical form
Air« . E if. Hence • h Not(EA) — 0 as expected.

Example 4.14 Let Y = x:B,y:C:

rr-Not(£zy) = {F xuy0}

rhNot(Ea;V) = {F xlyu,G xuy0} (4.1)

It is worthwhile to observe that the members of a complement set are not mutually disjoint, due to the
indeterminacy of u. We can achieve an exclusive 'or' if we resolve this indeterminacy, that is by considering
for every xu the two possibilities xl ,x°. Thus, for example, equation (4.1) may be made explicit into:

4.2. THE COMPLEMENT ALGORITHM 56

It is clear that in the worst case scenario the number of terms in a complement set is bound by 2"; hence
the usefulness of this further step needs to be pragmatically determined.

Example 4.15 In the signature of numerals:

Not(XxuXyu.s(E x^0)1 =

{XxuXyu.x,XxuXyu.y, XxuXyu.0,XxuXyu. s(Z x°yu)1,XxuXyu.s(Z' xuy1)1}

We can now revisit1 Example 2.8:

Not(lam(Xxu:exp.app (E x°) x)) —

{lam{Xxu:exp.app (Z x1) {Z' xu)),

lam(Xxu:exp.app (Z xu) (app {Z' xu) {Z"xu)),

lam(Xxu:exp.app (Z xu) (lam(Xyu :exp.Z' xu yu)),

lam(Xxu :exp. lam(Xyu :exp. Z xu yu)),

lam(Xxu:exp.x),

app Z Z'}

It is easy to show that simple terms are closed under complementation.

Theorem 4.16 // M is a simple term and T I- Not(M) =$> N : A, then N is simple.

Proof: By induction on the structure of V :: T V- Not(M) =$■ N : A.

Case: V ends in NotFlx: immediate.

I\x:.4l-Not(M)=> N:B
V = NotLam

r h Not(Azu: A. M) => Xxu: A. N : A -4 B

By sub-derivation T,x:A h Not(M) => TV : B, hence by IH N is simple and so is Xxu: A. N.

Case:
g €Y,ur,g : Ai -^ ... -^ Am -\ a m>0,h£g

V = = NotApp1

r h Not(/» Mk) =►(... (g (z1 r"))1... (zm r"))1
: a

Since every (Zi Tu) is simple, so is (... (g (Zx T"))1... (Zm T"))1.

Case: V -

T h Not(Mi) =4> TV : Ai \<i<n
 == NotApp2

r h Not(/i Mk) =*(... (fc (Zi r"))1... (Zt.! ruY N1
 (zi+1 r")1... (z„ r"))1

: a

By IH N is simple and as above so is every (Zi Tu). Thus
(... (h (Zx r"))1... (z^! r«) TV1 (zi+1 r«)1... (z„ r«))1 is simple.

D

Corollary 4.17 If M is a simple term, and T h Not(M) = N, then N is a set of simple terms.

We address the soundness and completeness of the complement algorithm w.r.t. the set-theoretic seman-
tics: the proof obligation consists in proving that the former does behave as a complement operation on
sets of patterns, i.e. it satisfies disjointness and exhaustivity. Termination is obvious as the algorithm is
syntax-directed and only finitely branching. We start with soundness: for $ = x^1 ... x^Si xf x^ ... z*n

let Not($) = s? . ■ ■ xU x?ot(d) x?+1... xl.
xTo avoid too many indices on existential variables, we adopt a convention that the scope of existential variables is limited

to each member of a complement set.

4.2. THE COMPLEMENT ALGORITHM 57

Theorem 4.18 Let T h N : A be a simple (linear) term: for every Q such that T I- Not (A7) =>■ Q : A, it is
not the case that both T h M G \\N\\ :AandT\-M£ \\Q\\ : A.

Proof: By induction on the structure of V :: T h Not (AT) =$> Q.

Case: V ends in NotFlx; assume T \- M e \\E $|| and consider Xi'.A G V:

Subcase: $(x^) = 1:

*;fi;(A,ij:A) r-$ ofc
ThMe ||Not(JE*)||
rhMe j|ZNot($)||
; Ü; (A, xi:4) h M : A and (, fi, A); Xi:A; -\-M : A
1

Subcase: $(x<) = 0: symmetrically.

Subcase: $(a;,) = u: trivially true.

By definition
By assumption

By rule NotFlx
By Remark 4.10

By Corollary 3.14.

Case: V ends in NotApp1. Suppose both T\- M e\\h N\\\ and ri-Me \\g (Zx T")1 ... (Zm ruY\\ for h$g;
but this is immediately impossible by rule grApp as the root of M should be both h and g.

Case: V ends in NotApp2.

rhNot(ft Nl) =>(...(h (Zi r"))1...(z,-.! r")1 Q
1
 (zi+1 r«)1...(zn r"))1

:a
r h Not(Ar,) =» Q : Ai, for some 1 < i < n
ThhMle\\hNl\\:a
r\-hMke\\h (Zi r")1... (z^ r«)1 Q

1
 (zi+1 r

u):... (zn r")1 y: a
ThMiE \\Ni\\ : Ai
T h Mi G IIQII : A;
±

Case: V ends in NotLam:

r(-Not(Aa;u:A.iV) ^ \xu:A.Q : A ^ B
T,x:A\-Not{N)^Q:B
rh \xu:A.M G ||Aar":>l. JV|| : A Aß
ri-Aiu:A.Me ||Aa;u:AQ|| JAß
r,x:AI-MG ||7V|| :5
r,i:AI-M€||Q||:B
±

By hypothesis
By sub-derivation

By assumption
By assumption

By inversion
By inversion

BylH

By hypothesis
By sub-derivation

By hypothesis
By assumption

By inversion
By inversion

BylH

D

Note that soundness is based on Corollary 3.14, which holds for any strict term: thus disjointness does
not require simple terms.

Lemma 4.19 Assume V h EA $: a; either T \- M € \\EA $|| : a or there exists 1 < i < n such that
T 1- Not(EA $) => Z Not($) : a and T h M G \\Z Not(*)|| : a.

Proof: Let T; ■; ■ h M : A; then by Corollary 4.6 there exists Q and A such that T = fi,A and ;0;A h
M%A. Fix xf for 1 < i < n:

Case: For every x € dom(Q) such that x = x^ it holds ki G {0,w} and for every x G dom(A), ki G {l,w}.
ThenThMG \\E $\\.

Case: For some x G dom(fi) such that x = x*' it holds kt = 1. Then r V- M G ||Z x^ ... a;V_1 XJ x^+1 .. .z£||,
thatisTHMG ||Z|Not($)||.

4.2. THE COMPLEMENT ALGORITHM 58

M lt$ ■ \ft:A
 ngrFlx
T\-M g \\EA $|| : a

T,x:AhM^\\N\\:B
.am

rh\xu:A.M#\\\xu:A.N\\:
ngrl

A^B

T\-h:An±a 3t : 1 < i < n. T h Afc # \\Ni\\ :A
ngrApp

Th-hM^WhN^W-.a

9?h
grAppCls 11

r \-g Mm t \\h Ni\\ : a

Figure 4.3: Not a ground instance: T\-M#\\N\\ A

Case For some x £ dom(A) such that x = x^ it holds kt = 0.
that is Th Me ||ZNot($)||.

Then T h M £ \Zx\.. „u _0 „u „till
• ^i-X xi Xi+X ■ ■ -xnll'

a

epicted in Figure 4.3: For technical reasons, we need the rules complementary to Figure 4.2, which are d

We are now ready to prove exhaustivity of complementation.

Theorem 4.20 Assume T \- N : A is a simple (linear) term
such that r h Not(iV) => Q : A and T \- M <E \\Q\\ : A.

• tfierc i/rhM^ ||iV|| A, then there is a Q

Proof: By induction on the structure of V :: T h M g \\N\\ : A.

Case V ends in ngrFlx: by Lemma 4.19.

Case V ends in ngrAppCls.

T\-gM^i\\hNi\\:a
V h Not(A N$ =>(... (g (Z1 r«))1... (Zm T"))1 : a
ThgMm£\\g{Z1T

u)l:..{ZmT
uy\\:a

By hypothesis
By rule NotApp1

By rule grApp

Case: V ends in ngrApp:

ThhM^Wh NU\ : a
T\- Mi# \\Ni\\ : Ai for some 1 < i < n
T h Not(JVi) =4> Q : Ai and T h M{ € ||Q|| : A{

r\-Mj€ \\(Zj T")11| for all j £ i, 1< j < n
r i- Not(/i Mi) =» (... (h (z1 r«))1... [Zi-X n

1 N1
 (zi+1 r*)1...

ThhM^e\\h {Zx r")1... (z4_! r")1 Q
1
 (zm r«)1... (zm r«)1 y

(Zn

: o
T"))1 :

By hypothesis
By sub-derivation

BylH
By rule grFlx

a By rule NotLam
By rule grApp.

Case: 2? ends in ngrLam.

T h Xxu :A. M <? \\\xu:A. N\\ : A ^ B
r,x:A\-M#\\N\\ :B
T,x:A h Not(iV) =4> Q : 5 and T,x:A h M € ||Q|| : ß for
T h Not(Azn : A iV) =>■ Xxu: A. Q : A A 5
rhAz":AMe||Aa;u:AQ||:AA£

some Q

By hypothesis
By sub-derivation

BylH
By rule NotLam

By rule grLam

4.3. UNIFICATION OF SIMPLE TERMS 59

D

Corollary 4.21 (Partition Lemma) For a fixed signature £ letT h N : A be a (linear) simple term:

1. (Disjointness) It is not the case that V h M € \\N\\ : A andTY- M € ||Not(7V)|| : A.

2. (Exhaustivity) V h M G \\N\\ : A or T h M G ||Not(7V)|| : A.

Proof: Disjointness is entailed by Theorem 4.18, exhaustivity by Theorem 4.20. □

4.3 Unification of Simple Terms

As we observed earlier, we can solve a relative complement problem pairing complementation with intersec-
tion. We thus address now the task of giving an algorithm for unification of (linear) simple terms. We start
by determining when two labeling are compatible:

ini=uni=inu=i
ono = uno = on« = o

u n u = u

Recall that $ is a list of labeled bound variables; we can extend the intersection operations to these
contexts.

• n- = ■

($,!*) n ($',!*') = ('ä-n*',^') if fc n/c'is defined.

Remark 4.22 //T^fi^A; h $; ok, 1 < i < 2, then (I\ n T2); (Qi,fi2); (A,, A2) h ($2 n $2) ok, where

Ti n T2 denotes set-theoretic intersection and ($i n $2)(z) = $i(x) n $2(z). Indeed, ($x n $2)(:r) = u iff
x G dom(Fi) andx G dom(T2); moreover ($, n$2)(x) = 0 iff either x £ dom(fii UT2) or x G dom(fi2uri).
Analogously for ($i D $2)(ar) = 1. From «Aai, as fce/ore, # /o//ow5 that <£ h M G ||£U $i n *2|| #f
M | A*i n *2 . S such that (T5! n T2); (ftj, fi2); (Ai, A2) h 5 : A.

Following standard terminology with call atomic terms whose head is a free or bound variable rigid, while
terms whose head is an existential variable is called flexible.

Definition 4.23 (Higher-Order Pattern Intersection) Fix a signature S. For simple (linear) terms
M and N without shared variables such that Y \- M : A and V \- N : A, define T \- M D N => Q : A by the
following rules:

C\FF
r h (Ei $i) n (E2 *2) => H ($1 n $2) : a

no ru/e /or flex-flex same

c e s r h (Hi $1) n MX => Wi: Ax • • • r \- (Hn $„) n Mn => wn : An
nFRc

rh(£$)n(c Afi) => c Aß : a

j/ G r r I- (Hi *i) n Mi =>• JVi : Aj • • -r I- (H„ $„) n Mn => iVn ■. An

r h (£ *) n (y Ml) =* 2/ Ä£ : a

iierus r 1-MinM =>Qi: Aj• • • rhM„nJV„ =>Qn: An

nFfi"

ThhM^DhN^hQi-.a

T,x:A\- MDN ^ Q : B

r\RR

r h Aiu: A. M n Ax": A. N => Axu: A. Q : A A- B
r\L

4.3. UNIFICATION OF SIMPLE TERMS 60

where the H's are fresh variables of appropriate typing and n > 0. We omit two rules C\RFC and C\RFy

which are symmetric to DFR0 and C\FRy. The rules f)FRc and C\RFC have the following proviso: for all
a; € $ and 1 <i,j < n:

Vx.$(x) =()->• Vi.$j(a;) =0

Vx.$(x) = u -> Vz. $i(a;) = u

Vx.$(a;) = 1 —> 3i. $i(x) = 1 A Vj,j 7^ i.$j(x) = u

The rules C\FRy and C\RFy are subject to the proviso:

Vx.$(x) =0-»Vi.$i(x) =0

Vx.$(x) = u -> Vi. $i(x) = u

Vx.x 7^ y A $(x) = 1 -*• 3i. $»(a;) = 1 A Vj, j 7^ i-$j(x) = u

$(y) = u V ($(y) = 1 A Vi.$i(j/) = u)

Fine/!;/ de/ine r h Mn iV : A = Q if Q = {Q \ T h M n TV => Q : A}.

Some remarks are in order:

• In rule n^F we can assume that the same list of variables, though with different labeling, is the
argument of E, F and H, since simple terms are fully-applied and due to linearity we can always
reorder the context to the same list.

• Since patterns are linear and M and TV share no pattern variables, the flex-flex case arises only with
distinct variables. This also means we do not have to apply substitutions or perform the customary
occurs-check.

• In the flex/rigid and rigid/flex rules, the proviso enforces the typing discipline since each strict variable
x must be strict in some premise. If instead y is the projected variable, the modified condition on y
takes into account that the head of an application constitutes a strict occurrence; moreover, since y did
occur, it is set to u in the rest of the computation, as there are no more requirements on that variable.

• The symmetric rules take the place of an explicit exchange rule that is problematic w.r.t. termination.

The following example illustrates how the Flex-Rigid rules, in this case C\FRC, make unification on simple
terms finitary.

Example 4.24 Consider the unification problem

x:A\-E x^ c (F a;")1 (F' a;")1

Since x is strict in the LHS, there are two ways in which $ can be 'split' leading to the following sub-problems:

1. x:A hB'i'n F xu^H x1 x:A h E" xu n F' xu => H' xu

2. x:A \- E1 xuD F xu => H xu x:A h E" x1 n F' xu =$► H' x1

Hence the result:

x-.AhEx1^ c (F xuf (F' xu)x = {c (H x1)1 (H' xu)\c (H x")1 (H' x1)1}

Note that, similarly to complementation, intersection return a solution with some 'overlapping' possible;
again it is possible, in a post-processing phase to make the result exclusive: for example the above problem
can be made explicit in:

i:i(-£i'n c (F x")1 (F' x")1 =

{c (H x1)1 (H' x°)\c(H x0)1 (#' x1)1^ {H x1)1 (H' x1)1}

4.3. UNIFICATION OF SIMPLE TERMS 61

However, differently from complementation, we must remark that the latter is not the most general
solution w.r.t. the subsumption ordering on terms based on the (reverse) partial information ordering on
labels. Indeed, a member of the intersection, e.g. c (H x1)1 (H' x0)1 is a lower bound of both terms above,
i.e.

c{Hx1)1 (H'x0)1 < Ex1

c (H x1)1 (H'x0)1 < c (H xuY (H1 xu)1

but it is not the greatest upper bound:

c {H x1)1 (H' x°Y < c {H x1)1 (H' x")1

The following example illustrates the additional proviso on C\FRy:

Example 4.25 The unification problem y.A h (E y°) D (y (F y")1 (F' yu)1) has no solution, whereas
y.A h (E yl) n (y (F y1)1 (F' y0)1) = {y (H y1)1 (H' y0)1}.

Lemma 4.26 Let M be a closed simple term such that r^fij; Aj V- M : A and T2;Cl2;A2 \~ M : A ; then
r^n^Ai \- M :A andT2;n2;A2\- M : A iff (rx n r2); (fti,ft2); (A1; A2) h M : A.

Proof: (->) By induction on the size of (Ti U T2) \ (Ti D T2).

Base Let Tj = T2, thus (ri UT2) \ (ri nT2) = 0. Then by Exclusivity (Lemma 3.13) fii = ft2 and Ax = A2

and the claim holds.

Step Let Tj = (ri,x:C), where x g" dom(r2). By Tightening (Lemma 4.5) either T\\l$li,x:C)\ Ax\- M : A
or T[;ili; (Ai,x:C)\-M: A:

Subcase: r[; (fii,x:C); Ai h M : A By assumption
(r; nr2);(n1,x:C,n2);(A1,A2) \-M-.A BY IH
(r1nr2);(ni,x:C,n2);(A1,A2)hM:^ x^dom(r2)
(rinr2);(fi1,n2);(A1,A2) \- M :A x G dom(n2) by Lemma 3.13

Subcase: ri;fii; (Ai,x:C) \- M : A. Analogously.

(<-)

(rinr2);(Oi,n2);(A1,A2)hM:^ By hypothesis
(r1nr2,f]2);f]i;(A1,A2) \~ M :A By Loosening0 on fi2

(ri nr2,fi2, A2);üi; Ai \- M : A By Loosening1 on A2

ri;fii;Ai V- M : A Since (rx n r2),n2, A2,fii, Ai = r1,fii,A1
T2; fi2; A2 (- M : >1 Analogously

D

We introduce two n-ary strict application rules, one which correspond to the imitation step and the
other to projection, which will be needed in the proof of Theorem 4.33 and 4.34; in the following we shorten
x G dom(r) to x e r.

(r.AVJjnjAjl-Mji^ l<i<n

T; fi; A 1- c Ml... Mx
n : B

where T; 0; • (- c : Ax -4 ... -4 An A B and

1. Vx G A . 3i : 1 < i < n . x G A}.

2. Vi : 1< i < n. At U A) = A.

4.3. UNIFICATION OF SIMPLE TERMS 62

(r.AVJsfijAjl-Mi:^ l<i<n
 4 Ey

r;Sl;A\-y M*...M*:B

where r0; SI; A0 1- y : Ax A ... -4 An 4 B and

1. Vz'e A, a; ^ y. 3i : 1 < i < n. x E A].

2. Vi: 1 < i < n. A? U A] = A.

3. A0 = {y} and Vi : 1 < i < n. y € AJ*.

Note that in the latter rule we consider only the case where y occurs strictly, that is A0 = {y}; indeed, if
y € r0, then the rule is just a renaming of the previous rule -t Ec

n.

We proceed to show that both are derivable and invertible rules.

Lemma 4.27 Let T;Sl; • h c : Ax A ... 4 An 4 B: if {r,A?);Sl;A} \- Mt : Ai for 1 < i < j, then
(r, Au); SI; A1 h c M^ ... M/ : Aj+1 4...444B, w^ere

L VxG A^Ei : 1 <i < j.x £ Aj.

i'. Var € Au.-.3z : 1 < i < j .x € A\.

2. Vi:l<i<j.AföA]=AuUA1.

Proof: By induction on j.

j = 0 Set A1 = •; then by hypothesis and Weakening" (T,Au);ü;-hc:A1 4 ... 4 An 4 B.

j + 1 {T,^y,Q;A\\-Mi:Ai,l<i<j
(r,Au);fi^'hcMj...M/ : A,-+i 4 ... 4 An 4 5
(r,i»+1);(l;Aj+1hMi+1:AJ-+I

(r, A£); SI; A\. he Ml... Mj+1 : Aj+2 4 ... 4 An 4 B

such that:

(a) ieA^«iE Aj+1 or a; € A1.

(b) x £ Al «-» x € AJ+1 and x 6 A".

We now show that the last step satisfy the conditions in the claim.

1. x € A^
x 6 A}+1 U A1

Subcase: x € Aj+1

3i:l <i<j + l.x£A]

Subcase: x € A1

x 6 Af, for some 1 < i < j
Ei:l <i < j + 1. a; € A\

V. xeA%
x£Au

-i3i:l < i < j.a; € Af
x 6 AJ+1

x?A)+1

i3i:l <i < j + l.xe A|

By assumption
BylH

By hypothesis
By rule 4 E

By assumption
By (a)

BylH
A fortiori

By hypothesis
By(b)
BylH
By(b)

By disjointness of contexts

4.3. UNIFICATION OF SIMPLE TERMS 63

2. Vt:l < i < j . A] U A? = A1 U Au By IH
Aj+1 U AJ+1 = A1 U A" By hypothesis
Vi:l < i < j + 1. A\ U Af = A^ U A£ By (a) and (b) and set manipulations

D

Lemma 4.28 Let T; ft; • h c : 4i 4 ... 4 4n 4 5: ?/ (r, Au); ft; A1 h c M/ ... M] : Aj+1 4 ... 4 An 4
£, fften /or even/ 1 < i < j there are A*1, Aj such that (T, Af); ft; A} h M; : At and

1. VxG A1.3i : 1 < i <j.x G A].

V. Vx G Au.-.3i : 1 < i < j . x G A}.

2. \/i:l<i<j.AfUA}=AuUA1.

Proof: By induction on j.

j = 0 Set A1 = ■; then by hypothesis and Weakening" (r, A"); ft; • h c : Ax 4 ... 4 An 4 B.

j + 1 (r, Au); ft; A1 h c M{ ... Mj+1 : Aj+2 4 ... 4 An 4 B By assumption

(r, A£); ft; A\hcM\... M) : Aj+1 4 ... 4 An 4 B and

(r, A"+1); ft; A]+1 h M,+1 : A,-+i By inversion on rule 4 E and
{xe Al

+^x e Aj+i V x G A1) and (x G A£ -H-x € AJ+1 A x G Au)
(r, AV); ft; A} \- Ml:Ai for 1 < i < j By IH

since the conditions on the claim are satisfied as in the above Lemma 4.27.

D

Corollary 4.29 Rule —> E^ is derivable and invertible.

Proof: For derivability, use Lemma 4.27 with j = n, A" = •, A1 = A; conditions 1. and 2. are immediately
satisfied. Ditto w.r.t. invertibility, using Lemma 4.28. □

Lemma 4.30 Let T0; ft; y:... r- y : Av 4 ... 4 An 4 B. If (I\ Af); ft; A] h M{ : At for 1 < i < j, then
(r, Au); ft; A1 h y Mj1... M? : A,+i 4 ... 4 An 4 B and

1. VxG Al3i :l<i<j.xeA}.

1'. Vx G A".-n3z :l<i<j.xeA\.

2. \/i:l<i<j.AYUA}=AuUA1.

Proof: By induction on j.

j = 0 Let Ai = {y} and weaken T0 to T, Au; by hypothesis (I\ Au); ft; A1 h yAi 4 ... 4 An 4 B.

j + 1 Completely analogous to the same case in Lemma 4.27.

D

Lemma 4.31 Let T0;ft; y.... h y : Ax 4 ... 4 An 4 B: if (T, Au);ft; A1 he M\...M] : Aj+1 4... 4

An 4 J9, i/ien /or every l<i<j there are AV, Aj sue/« «fto« (r, A*1); ft; A| h M* : A and ■

i. VxG A^Bi : 1 <i < j.xE Aj.

J'. Vx G A1.-^' : 1 < i < j .x G A?.

2. Vi: 1 < i < j . A? U AJ =A"UA1.

Proof: By induction on j similarly to Lemma 4.28. □

4.3. UNIFICATION OF SIMPLE TERMS 64

Corollary 4.32 Rule —> E% is derivable and invertible.

Proof: As in Corollary 4.29, using Lemma 4.30 and 4.31. D

We are now ready to address soundness and completeness of intersection:

Theorem 4.33 For any simple linear term N\ and N2 without shared variables such that $hJV] : A and
V \- N2 : A, if V \- M e \\Ndl : A and * t- M € ||A2|| : A, then there is N such that * h N: D N2 => A^: A
andVh M E \\N\\ : A.

Proof: By simultaneous induction on the structure of Vx :: * h M € HJVx j| : A and D2::*hMe ||AT2|| : A.

Case: Vi,V2 end in grFlx; by Remark 4.22 and the left-to-right direction of Lemma 4.26.

Case: V\ ends in grFlx and V2 ends in grApp: there are two cases depending whether the head of N2 is a
constant or a bound variable:

Imit * h M € \\c QJJII By hypothesis
M = c ~Ml and V\ :: * V Mt € \\Q,\\ for all 1 < i < n By sub-derivation
* 1- c M^ e \\E $|| By hypothesis
c M\ 4-1 $, where t = A$. c tln By sub-derivation
r;fi;Ahci[:B For T; Ü; A h $ ok
(r, A"); Q; A} h ii : A* For some A", A" satisfying 1 and 2, by inversion on rule -4 U™

(Corollary 4.29)
X>J :: f h M, € ||Ej $i|| By rule grFlx choosing $* such that (r, A{); 0; A] h $j oA;
X>i :: * h Ei $, n Qi => Nt for 1 < i < n and
* I- Mi € || ATi|| By IH on V\, V\ since the proviso is satisfied
V :: V \- E $ n cQl => cTji By rule DFR0

* I- cMje \\c N*\\ By rule grApp

Proj Proceed as above, but using inversion on rule —> J3™, i.e. Corollary 4.32.

Case: T>2 ends in grFlx and T>\ ends in grApp: symmetrical to the above.

Case: T>i,T>2 end in grLam:

* 1- Ax": A. M € ||Ax": A. Nx || By hypothesis
V[:: %,x:A h M € ||ATi|| By sub-derivation
*h \xu:A.M € ||Ax":AAT2|| By hypothesis
Z>2 " *,x:A h M € ||AT2|| By sub-derivation
D' ::*,x:v4h Ni D N2 ^ N and f,x:ihMe ||7V|| ByIHon£>i,P2

$ I- Ax": A. Ni n Ax": A. N2 => \xu:A. N By rule
<H\-Xxu:A.M e\\Xxu:A.N\\ By rule

Case: T>\, V2 end in grApp: a straightforward appeal to the inductive hypothesis as in the above case.

D

For the other direction, we are going to prove a stronger result:

Theorem 4.34 For any simple linear term Ni and N2 without shared variables such that $ h Ni : A and
* h N2 : A, for every N such that ^\-NinN2=>Nif^\-M& \\N\\ : A, then V \- M € \\Ni\\ : A and
* I- Af e HJV2II : -A -

Proof: By induction on the structure of V :: * h Ni D N2 => N and inversion on V :: * h M £ \\N\\ : A.

Case: V ends in OFF; by Remark 4.22 and the right-to-left direction of Lemma 4.26.

4.4. THE ALGEBRA OF STRICT TERMS 65

Case: V ends in C\FR.

V :: * h E $ n c Ql
n =» c A^ By hypothesis

Pi :: $h£ $i nQi => Ni: 1 < i < n By sub-derivation
* h- c M£ e \\c JVXll By hypothesis
* h Mj € 11Will By inversion
* h Mi G JlQiJl and *hMi£ \\E{ $j|| By IH on X>4

Mi | i $i, where t = A$;. t, such that (#*, Z?;
u); fi; Aj h ^ : A* By rule grFlx for (**, A?); fi; A? h $* oJfc

r;fl;Ahctjj:o By rule -4 £" (Lemma 4.27), since the proviso satisfies 1,2
$hc^£ HJE7 #|| By rule grFlx
^ \-cldl e\\cQl\\ ByrulegrApp

Case: V ends in f)FRy. Proceed as above, but using Lemma 4.30.

Case: V ends in DL; by IH as in Theorem 4.33

Case: V ends in C\RR; ditto.

D

Corollary 4.35 (Adequacy of Pattern Intersection) Fix a signature E. For every simple (linear) term
N\ and N2 without shared variables such that T \- Ni : A and T h N2 : A, for every M, T \- M € \\Ni\\ : A
andT\- M 6 ||7V2|| : A ifJTh M e H^n^ll -A.

Proof: From Theorem 4.33 and 4.34. G

4.4 The Algebra of Strict Terms

An interesting and natural question is wondering whether complementation is involutive. The answer is
of course positive, since the latter is a boolean property and the complement operation has been shown
to satisfy "tertium non datur" and the principle of non-contradiction. Rather than proving involution in
isolation, we will show that every other boolean property is satisfied. As the complement of a term is possibly
a finite set of terms we need to extend the intersection and complement operations to finite sets of terms.
For the sake of readability, we shall define this the empty context. It is clear, although cumbersome, how to
generalize it. We also drop the type information and overload the singleton terms notation.

Definition 4.36 // M and M are finite sets of (linear) simple terms of type A, define:

MoM = {Q\QeMnN,M eM,NeAf}

Not(M) =' PI Not(M)
MeM

Those operations on set of terms satisfy the same properties that 'singleton' intersection and comple-
mentation do.

Corollary 4.37 (Adequacy of Set Intersection) //A/i,A/2 are finite sets of (linear) simple terms of type
A, then T \- M € \\AfiW : A and V h M € \\Af2\\ : A iff T h M € ||M nM2\\ : A.

Proof: r h M € ||A/i|| : A and T h M £ \\Af2\\ : A iff there is Nx <E M and N2 £ M2 such that
T h M € \\Ni\\ : A and T \- M € ||7V2|| : A iff, by Corollary 4.35, T \- M e \\Ni D N2\\ : A iff, by definition,
rhMe HMn^ll :A. U

Corollary 4.38 (Set Partition Lemma) Let M be a finite set of (linear) simple terms of type A:

1. (Disjointness) It is not the case that T h M € ||A/]| : A and T h M € ||Not(A/")|| : A.

4.4. THE ALGEBRA OF STRICT TERMS 66

2. (Exhaustivity) T h M € \\Af\\ :AorV\-Me \\Not(Af)\\ : A.

Proof:

1. Assume T \- M € \\Af\\ : A and T h M £ ||Not(A0H : A. By rule gr*, T h M € \\N\\ : A, for some
N E Af. By definition, T h M £ || DN€j</ Not(7V)|| : A; by (repeated application of) Corollary 4.35
r h M € ||Not(JV)|| : A, for every N £ Af, impossible by the Partition Lemma.

2. Similarly to the above.

D

It is therefore possible to organize the set of finite sets of simple terms over a given signature, call it
TF in a boolean algebra under set union, patterns intersection and complementation, by taking equality as
extensional identity (on sets of ground terms), that is, in symbols:

Ml~M2 iff ||M|| = ||M||

Theorem 4.39 Consider the algebra of finite sets of simple terms (TF, 0, U, fl, Not) under set union, pattern
intersection and complementation. Then the following holds:

1. MnM ~M.

2. Mnßf-AfnM.

3. Mn(Afur)~{MnAf)u(Mnv).

4. Mn(AfnV)~(MnJ<S)nv.

5. Not(Not(.M))~.M.

6. Not(7» ^ 0.

7. Not(0) ~7>.

Proof: From Corollary 4.37 and 4.38 and the fact that U is set-theoretic. D

Corollary 4.40 The algebra (7F,0,U,n,Not) of finite sets of simple (linear) terms is boolean.

Proof: Theorem 4.39 confirms that the above operators satisfy the boolean algebra axioms. □

Corollary 4.40 guarantees that any other boolean operation is definable: indeed complementation and
intersection alone allows to define the relative complement operation:

Definition 4.41 Given M and Af sets of simple terms of type A:

M-Sf = .Mn(Not(A0)

The adequacy of this encoding follows immediately from the Partition Lemma and soundness and com-
pleteness of intersection.

Corollary 4.42 T\-M€\\M\\- \\Af\\ iffT\~M € \\M -M\\ .

Proof: r h M € ||M|| - \W\\ iff Y h M € ||M|| and T h M £ ||JV|| for every N € Af iff (Corollary 4.38)
r r- M € ||.M|| and T h M G ||Not(iV)|| iff (Corollary 4.35) r t- M € \\M n (Not(AO)ll iff by definition
n-MGiiA^-^ii. □

4.5. SUMMARY 67

It is notable that the U operator must be set-theoretic union rather than anti-unification or generalization,
as traditional in lattice-theoretic investigations of the algebra of terms [Plo71]. The problem is the intrinsic
classical nature of complementation which is not compatible with the very irregular structure of the lattice
of terms where anti-unification is interpreted as the lowest upper bound. Indeed, De Morgan's rules would
fail, namely, denoting anti-unification with V:

Not(s(0) Vs(s(0))) = Not(s(A')) = 0 ± {0,s(s(s{X)))} = Not(s(0)) n Not(s(s(0)))

We end this chapter with a preview of how term complement will be used as a building block of the
clause complement algorithm.

Example 4.43 We can combine Example 2.6 and 2.8:

Not{(app {lam (Xxu :cxp. E i")) F), lam{Xx":exp. app (E x°) x)} =
Not(apj) {lam {Xxu :cxp. E xu)) F) n
Not(Zam(Axu :exp. app {E x°) x)) =

{lam {\xu:exp.{H x")),
app {app H H') H")
n

{lam{\xu:exp.app {H x1) {H' xu)),
lam{Xxu:exp.app {H xu) {app {H' xu) {H"xu))),
lam{Xxu:exp.app {H xu) {lam{Xyu :exp. H' xu yu))),
lam{Xxu :exp. lam{Xyu :exp. H xu yu)),
lam{Xxu :exp. x),
app H H'} =

[lam{Xxu:exp.app {H x1) {H' xu)),
lam{Xxu:exp.app {H xu) {app {H' xu) {H" xu))),
lam{Xxu:exp.app {H x") {lam{Xyu:exp. H' x" yu)))
lam{Xxu :exp.lam{Xyu :exp. H' xu yu)),
lam{Xxu:exp.x),
app {app H H') H"}

Thus given the 'program':

betarx : isredx{app {lam {Xxu:exp.E xu)) F).
etarx : isredx{lam{Xxu:exp.app {E x°) x)).

Computing the complement of each head as in Example 4-4$ yields the complementary program:

nbl
nb2
nb3
nb4
nbr
nb6

nonJsredx{lam{Xxu:exp.app {H x1) {H' xu))).
nonJsredx{lam{Xxu:exp.app {H xu) {app {H' xu) {H" xu)))).
nonJsredx{lam{Xxu:exp.app {H xu) {lam{Xyu :exp. H' xu yu)))).
nonJsredx{lam{Xxu:exp.lam{Xyu:exp.H xu yu)))-
nonSsredx{lam{Xxu :exp.x)).
nonJsredx{app {app H H') H").

4.5 Summary

In this chapter we have been concerned with the relative complement problem in a setting where patterns
may contain binding operators, so-called higher-order patterns. Higher-order patterns inherit many pleasant
properties from the first-order case, even for complex type theories. Unfortunately, the complement operation
does not generalize as smoothly. The complement of a partially applied higher-order pattern cannot be

4.5. SUMMARY 68

described by a pattern, or even a by finite set of patterns. The formulation of the problem suggests that
we should consider a A-calculus with an internal notion of strictness so that we can directly express that a
term must depend on a given variable. For reasons of symmetry and elegance we have also added the dual
concept of invariance expressing that a given term does not depend on a given variable. We have developed
such a calculus, so that we can show that for a suitable embedding in our calculus simply-typed patterns is
such that the complement of a linear pattern is a finite set of linear patterns and unification of two patterns
is decidable and leads to a finite set of most general unifiers. Consequently, finite sets of linear patterns in
the strict A-calculus are closed under complement and unification. If we think of finite sets of linear patterns
as representing the set of all their ground instances, then they form a boolean algebra under simple union,
intersection (implemented via unification) and the complement operation.

Chapter 5

Elimination of Negation in Clauses

The transformational approach to negation in normal programs has a somewhat long history, see [Nai86] for
a survey of the early 80's. The idea was to implement negation using inequalities, so that the complement
of any predicate occurring negatively in a program is synthesized to obtain an equivalent definite program.
This was first proposed in [ST84].

5.1 The Completion

At the risk of being trivial, let us start by asking naively what the complement of a program should be; if
we see the latter as a set of (possibly mutually recursive) predicate definitions, its negation would be the
set of the negation of those definitions. Thus, let us concentrate on a program definition as our target and
consider the simplest case, i.e. that of a single clause q(0) on the signature of numerals. Our first instinct
would be to use the Not algorithm and by computing Not(O) = s(X) assert VX:nat. ->q(s(X)); this is indeed
the right thing to do, but we need to justify it formally. We can look at the definition q(0) as a degenerate
case (that is with trivial condition) of inductive definition; an equivalent formulation would be:

VX:nat.q(X)<r-X = 0.

for an object-logic equality symbol '=', which simply expresses the condition X = 0 for atoms to be in
the inductive definition of q. In this Chapter we use just '='. The next step is to enforce the minimality
condition by saying that the latter is the only way to belong to the definition. One way to achieve that is
by exchanging the «— connective into a biconditional <->:

VX:nat.q(X) ^> X = 0.

This is in a nutshell Clark's very fortunate idea of the completion of a program [Cla78]. What is left
is describing how to interpret the equality relation; this is accomplished by the so-called Clark's equality
theory, that is the axioms of free equality: namely, the usual equality axioms including congruence, plus the
axioms for finite trees. Indeed, this theory is the axiomatic and proof-theoretic rendering of the unification
algorithm, for a proof see for example Stärk's thesis [Stä92]. For instance, the following is free equality over
numerals:

(Dec)
(Clh)
(Ock)

{DC A)

Vx,y : s(x) - s(y) -> x = y
\/x : 0 ^ s(x)
Vx : x ^ t[x] if x occurs properly in t[x]
Vx : x = 0 V 3y : x = s(y)

The last axiom is the Domain Closure Axiom [MMP88], which is required to give a complete axiomatization
of finite trees over finite signatures. Since we will not consider unification so far, we will keep this relation
uninterpreted; thus those axioms do not play any role, which is handy, as it allows us to dispense with the
issue of the compatibility of DCA with dynamic extensions on the signature.

5.1. THE COMPLETION 70

Vx. even(x) ox = OV3j/.x = s(s{y)) A even(y)

Vx. -ieven{x) O ->(x = 0 V 3y . x = s(s(y)) A even(y))

Vx. -ieven{x) «-» x ^ 0 A (Vy. a; ^ s(s(y)) V -^even(y))

Vx. -teven(x) «i^OAVi/.s;^ s(s(y)) V (3y . a; = s(s(j/)) A ^even(y))

Va;. -ieuen(x) <-> (a; 7^ 0 A Vy. a; 7^ s(s(y))) V (x 7^ 0 A 3y. x - s{s(y)) A ->even(y))
r^disunify(x^OA\/y.XTts{s{y)))

Va;. ~<even(x) «-)• x = s(0) V (x 7^ 0 A 3y . x = s(s(j/)) A ->even{y))

^*disunify(x^0A'3y:x=s(s(y)))
Vx. -ieuen(x) -H- x = s(0) V (3j/. x = s(s(y)) A -<even(y))

"^prettyp

odd(s{0)).
odd(s(s{Y))) i- odd(Y).

Figure 5.1: Synthesis of the predicate odd

Of course, definitions are usually more interesting than a simple clause, so let us step to next simplest
example, even numbers:

even(0).
even(s(s(Y))) <— even(Y).

To turn this code into a minimal inductive definition, we need to normalize the conjunction of clauses,
building what is known in the logic programming jargon as the completed definition of a predicate, a process
described for example in [AB94]. The net result is the axiom:

Vx.ewen(x) f>x = 0V 3y.x = ss(y) A even(y)

One way to obtain the complement definition, that is odd, would be to reason classically on the completed
program by taking the contrapositive of the completion. Let me offer the following rational reconstruction.
We may use rewrite rules to achieve conversion into negation normal form (nnf) and into disjunctive normal
form (dnf), plus some more massage to preserve the original positive bindings in clauses. Once this is done,
we need a way to solve the possibly universally quantified dis-equalities we have created. A call of the
disunification algorithm described in Section 2.2 (disunif y(...)) is enough to obtain a solved form, from
which we can recover the intended negated program. This is best explained in Figure 5.1, which uses the
subcomputation of Vj/: z ^ 0 A z ■£ s(s(y)), detailed in Example 2.2.

Following this drift, an extensive project started in Pisa under the name of intensional negation [BMPT87,
MMP88, BMPT90, ABT90, MPRT90b, FBM93]. In particular [BMPT90] computes the set-theoretic com-
plement of the terms in the negative predicate compiling away the inequalities. The authors restrict to a
class of left-linear non-stratified program called flat, where all predicates are defined by a single clause (and
hence we have no disjunction in the completion) and such that if a head contains non-variable terms, the
body must be a single literal. With some painful source-to-source transformations, programs can be turned
in and out of this format. Thanks to this, the transformation of the completion delineated above yields only
disequation of the form x 7^ t, which the Not algorithm can solve.

If we discard for the moment the problematic issue of local variables, i.e. variables that appear in the
body but not in the head of a clause (as they turn out to become universally quantified in an extensional
sense during the completion transformation), this seems at first sight fairly convincing. On the other hand,
managing control of disunification and rewrite rules requires some ingenuity as the following example shows:

5.2. INTRODUCTION TO HHF COMPLEMENTATION 71

Example 5.1 Consider the usual program for membership in lists:

member(X,X.XS).
member (X,Y.YS) <- member(X,YS).

Its completion is

Vz,zs(member(z,zs) <-» 3x,xs(zs = x.xs A z = x) V

3a;, y, ys(2s = y.ys Az=iA member(x, ys)))

The synthesis of its negation is depicted in Figure 5.2. Not only disunification is more complex, as there
are a few choices of variables where the Explosion rule can be applied, but propositional transformations are
difficult to direct as well.

Working with flat programs is not a real alternative, since some form of partial evaluation is needed
to recover some structure in the target program. In fact, the more mature version presented in [FBM93]
embraces the constraint logic programming approach. We will instead give a completely deterministic algo-
rithm to compute the negation of programs. This is based on solving the relative complement problem by
pairing term complement with unification and is proven correct by Corollary 4.40; that is, we do not need
full disunification as we can solve, for example x ^ 0 A Vy : x ■£ s(s(y)) by computing Not(0) n Not(s(s(y)).

There is one further, more basic difficulty with the completion-based approaches; they use transformations
that are intrinsically classical and turn out to preserve the operational semantics, only because in Horn logic
classical and intuitionistic provability coincide. We discuss this issue further in Section 5.3. We will instead
lift the boolean operations we have introduced on (simple) terms to clauses (programs) and we shall prove
that they still satisfies the usual boolean rules; in particular we will verify that clause complementation
fulfills exclusivity and exhaustivity. This high-level 'boolean' language will eventually be compiled into a
version of HHF that is amenable of a complete uniform proof search strategy. We offer an informal discussion
next (Section 5.2).

5.2 Introduction to HHF Complementation

Consider the following judgment to check whether a lambda terms is linear1, if every functional sub-term
uses each of its arguments exactly once:

x linear

Aa;. e linear in x e linear

Aa;. e linear

e\ linear e2 linear

linlamx'u

(ei e2) linear
linapp

Ax. e linear in x
■ linxx linxlmy

Ax. x linear in x Ax .Ay. e linear in a;

Aa;. ei linear in x Ax . e2 linear in x
 linxappi Unxapp2
Ax. (ei e2) linear in a; Aa;. (e! e2) linear in x

'Do not confuse this notion with the one which refers to a term not having repeated occurrences of the same existential
variable.

5.2. INTRODUCTION TO HHF COMPLEMENTATION 72

comp{member)
7cp

\/z,zs(-<member(z,zs) o

Vz, zs (-^member (z, zs) <->

"dnf
Vz, zs(-^member(z, zs) <->

(dl) I >E+R(zs=nil)(l.l)

r >Cl(T)*

"^^prettyp

(dl) I >E+R(zs=w.ws)(1.2)

UE2(x,y,xs,ys)

~~*prettyp

(0,6) *disunify(Vx,xs(zsj£x.xs\/z^x))

UE2(x,y,xs,ys)

1 'norm

^^prettyp

Vx, xs(zs ^ X.XS V Z j^ l) A
Vx, y, ys(zs 7= y.ys Vz/iV -*member(x, ys))

Vx, xs(zs 7^ x.xs V z 7^ x) A
Vx,y,ys(zs 7= y.ys Vz/i)V
3x, y, ys . (zs = j/.ys Vz = i)A -imem&er(x, ys)

(dl) Vx, y, xs, ys. (zs ^ x.xs V z 7^ x) A (zs 7^ y.ys V z ^ x)
(d2) Vx, xs, (zs 7^ x.xs V z / i) A
3x, y, ys. (zs = y.ys A z = x) A -^member(x, ys)

(dl.l) V(nz7 7^ x.xs V z 7= x) A (m7 7= y.ys V z 7^ x) A zs = nil

nonmember(X, nil)

(dl.2) 3w,wsVx,y,xs,ys.(w.ws 7= x.xs V z =fi x) A
(JO.WS 7^ y.ys V z 7^ x) A zs = IU.WS

3w(u> 7^ z)

0

x 7= y A 3y,ys .zs = y.ys A z = x

3y,ys(zs = y.ysAz ^ x)

nonmember(X,Y.YS) ^I^ Y, nonmember(X, YS).

Figure 5.2: Synthesis of the nonmember predicate

5.2. INTRODUCTION TO HHF COMPLEMENTATION 73

Intuitively, we check for linearity of a function making sure that the it is linear in its first argument
(judgment 'Az. e linear in i') and then recurring on the rest of the expression. Note the rule '/m/amAI,u'
is hypothetical in u and parametric in x; rule linxlmy is instead only parametric in x.

Frameworks based on HHF provide an ideal syntax to represent these judgments; namely, via the usual
encoding introduced in Example 2.6:

Example 5.2

linlam : linear(lam Xx . E x)

4- linx(Xx .E x)

4- (\/x:exp. linear (x) —» linear(E x)).

linapp : linear(app E\ E2)

<- linear(Ei)

•f- linear(E2).

linxx : linx(\x.x).

linxapl : linx(Xx.app (E\ x) E2)

<— linx(Xx. Ei x).

Unxap2 : linx(Xx. app Ei (E2 x))

<— linx(Xx. E2 x).

linxlm : linx(Xx . lam(Xy . E x y))

<— (Vy :exp. linx(Xx . E x y)).

The judgment and its implementation is clearly a decision procedure. It does make sense to ask ourselves
what is its complement. An expression is not linear if there is some function which either does not use its
argument or uses it more than once. We first observe that, since linear is a relation defined via exhaustive
and exclusive patterns term complementation does not play a role. Then, the complement of linapp does
not pose any problem, as it is a Horn clause: an application in not linear if either the first element or the
second in not linear.

-ilinapp : ~linear(app Ei £2)

«- -ilinear(Ei) V ->/meor(JE2).

A lambda expression in not linear in two cases: first it is not linear in its first argument:

-ilinlaml : -ilinear(lam(Xx. E x))

<— -<linx(Xx. E x).

Secondly, if its body is not linear. Now, this poses new problems, as we have to negate a hypothetical
and parametric clause. Let us follow our nose and reason by example: suppose we are given, in the empty
context a goal linear(lam(Xx. lam(Xy. x))), which is unprovable, since the second lambda term is not linear
in y; the proof tree yields the failure leaf linx(Xy. z), for a new parameter z, in the context z:exp; linear(z).
Our guiding intuition is that we want to mimic a failure derivation so as to provide a successful derivation
from the negative definition, i.e. a proof of -^linx(Xy .z) from z:exp; linear(z); this shows one prominent
feature of complementation of an HHF formula: negation 'skips' over V and ->, since it needs to mirror
failure from assumptions.

Let us turn to complementing the judgment ' linear in x\ A first point to note in that, by encoding an
object expression 'e' with a pattern variable, we must make sure that in clause linxapl, linxap2 the variable
x does not occur in the argument which is not checked. We thus embed the clause in the strict A-calculus
and '£' in the simple term lE x°\ For the sake of readability we do this only for the two aforementioned
clause and we also hide ()u annotations.

5.2. INTRODUCTION TO HHF COMPLEMENTATION 74

linxapl : linx(\x. app (F x) (G x0))

<- linx(Xx .F x).

linxapl : linx(Xx. app (F x°) (G x))

«— linx(\x .G x).

Via term complementation and intersection in the strict A-calculus we obtain, among others:

-^linxapl : -*linx{Xx. app (F xl) (G x1)).

-linxapl : -<linx(Ax.app (F x°) (G x0)).

Moreover, similarly the case of top-level application, the complement of linxap; holds if the body does not
hold:

-'linxapl : ->linx{Xx. app (F x1) (G x0))

<- -ilinx(Xx. F x1)

->linxap2 : -ilinx(Xx. app (F x°) (G x1))

<- -ilinx(\x .G x1).

Now, let us examine clause linxlm and let us reconsider the failure leaf linx(Xy.z) from the context
z:exp; linear(z). In a first attempt, let us consider what the complement would be according to the idea
above:

-i linxlm : ->linx(Xx. lam(\y .Exy))

«— (Vy:exp.-ilinx(\x.E x y)).

However, there is no way to obtain a proof of -ilinx(Xy. z) from the current context. Indeed, the linxlm
clause does not carry enough information by itself so that its complement can mimic the failure proof. In a
sense that we will make precise, the clause, and in turn its predicate definition is not as sumption-complete:
once it has introduced a new parameter, the clause only specifies how to use it in a positive context. It is up
to us to synthesize its dynamic negative definition, in this case exactly -^linx(Xy. z). More generally, it is a
characteristic of HHF that the negation of a clause is not enough to determine the behavior of a program
under complementation. We will have to insert (via a source-to-source transformation) additional structure
in a predicate definition in order to completely determine the provability and failure of goals which mention
parameters. By observing the structure of all possible assumption that a predicate definition can make, we
will augment those assumptions with their negative definition. In particular, we first augment the clause
linxlm:

augD(linxlm) : linx(Xx. lam(Xy .Exy))

«— (Vy:exp.-ilinx(Xx.y) —> linx(Xx.E x y)).

so that, by complementation, we obtain

-iaugD{linxlm) : ->linx(Xx.lam(Xy .E x y))

«— (Vy:exp.-ilinx(Xx.y) —> -^linx{Xx.E x y)).

Moreover, we need to do the same with the linlam clause, since the linx predicate may occur as a subgoal:

augD(linlam) : linear(lam(Xx. E x))

«— linx(Xx .E x)

4— (Vx:exp.(^linx(Xy .x) A linear(x)) —> -*linear(E x)).

In summary the negative program is:

5.2. INTRODUCTION TO HHF COMPLEMENTATION 75

->linapp : -<linear(app E\ E2)

< 'linear(Ei) V -^linear{E2).

linlaml : -^linear(lam(\x . E x))

i <linx(\x. E x)

V (Vx:exp. (-<linx(\y . x) A linear(x)) -> -^linear(E x)).

^linxapl

-ilinxap2

ilinxapS

-<linxap4

-iinxlm

-<linx(Xx . app (F xl) (G x1)).

-ilinx{\x.app {F x°) {G x0)).

-ilinx(\x . app (F x1) (G x0)) *- ->linx(\x. F x1).

-ilinx(\x .app (F x°) {G x1)) <- -<linx(Xx .G xl).

->linx(Xx. lam(Xy . E x y))

<— (Vy.exp. -*linx(\x -y) —> -<linx(Xx. E x y)).

While it is not impossible2 to manually come up with this program by writing predicate definitions
formalizing when terms are strict (that is, variable arguments occur at least once) and vacuous(tha.t is,
arguments are guaranteed not to occur) and then by merging them in the correct fashion, it would be better
to have this done automatically, especially considering changes or extensions of the original program.

Unfortunately the procedure we have outlined is not possible in general. Consider a clause encoding the
introduction rule for implication in natural deduction, which can be used to check whether an implicational
formula trivially holds:

Example 5.3

form type

imp form —> form —> form

a form

b form

impi nd(A imp B) *- (nd(A)

Following our earlier remark its complement would be:

-limpil : ->nd(a)

-<impi2 : ->nd(b)

nd(B)).

' impi ind(A imp B) <- ({VC:form. -md(C) <- C £ A) -> ->nd(ß)).

Apparently, this specification is incorrect since both nd(a imp a) and -ynd(a imp a) are derivable from the
empty context. We can isolate one major problem: in clause impi, the assumption nd(A) that is dynamically
added to the (statig) definition of the nd predicate overlaps with the head of the clause. Thus, a goal such
as -md(a) can be resolved with both the static and the dynamic program, yielding inconsistent solutions.
A symmetrical problem can occur when dynamic and static clauses do differ but their complements do not.
Suppose we introduce a predicate which checks if a number is even and non zero as follows:

e : ev(s(s(N))) <- (ei/(0) ->• ev(N)).

Again, our naive algorithm would incorrectly yield:

-»el : ->eu(0).

ne2 ieu(s(0)).

^ev(s(s{N))) <- {VM:nat.->ev(s{M)) iev(JV)).
2For what is worth, the first three versions of such a program I wrote were mistaken.

5.3. BACKGROUND 76

Thus both ev(s(s(0))) and -ieu(s(s(0))) are incorrectly provable. The problem here is the overlapping
between the of assumption ev(0) and the complement of the head of the e clause.

We have thus isolated two main issues:

h Exhaustivity: we need to enrich clauses so that every (ground) goal or its negation is provable.

2. Exclusivity: we need to isolate a significant fragment where it is not the case that both a goal and its
negation are provable.

We will describe in Section 6.6 a procedure that we call augmentation, which, by enriching the program
with the complement of assumptions will, will achieve exhaustivity (Section 6.8); moreover, we will achieve
exclusivity with the restriction to complementable programs, formally introduced in Figure 6.7. To anticipate
the idea, a clause is complementable if every assumption is parametric in some eigen variable. We will try
to motivate in Section 5.4 why this fragment is adequate to the practice of logical frameworks. Section 5.5
reviews some related work in the area of NF and embedded implication.

5.3 Background

Traditionally (and ideally), a completion construction for the NF rule is an extension of a program, say
E{P) such that, in a logic L equipped with a provability and finite failure relation, say h/, and H \~L, a
consequence relation \=L and a negation sign -i, for any given goal G (ideally) it holds:

1. VL G iff E(P) KL G.

2. Hhjr, G iff E(P) |=L -.G .

Many such constructions have been proposed for Horn logic, starting from the Closed World Assumption
(CWA) [Rei78]. The Clark completion [Cla78] is perhaps the most successful proof-theoretic and finitary
explanation of NF: the main idea is that clauses in a predicate definition should be seen as an iff-definition,
thus enforcing the minimality condition of its inductive definition; this would correspond, in model-theoretic
terms, to the existence of a least intended model. The if-part states the condition to belong to the inductive
definition, while the only-if part excludes everything else, thus providing a computable approximation to the
CWA. This is well understood and agreed as far as Horn logic is concerned and confirmed by the completeness
of finite failure w.r.t. the completion [Apt90].

As observed first by Gabbay [Gab85], the positive logic of embedded implication is not classical but
intuitionistic (actually minimal). When coupled with negation as failure in all its generality, its meta-logic
fails to have some straightforward logic properties, as detailed in Section 5.5. The key difference lies in
the constructive interpretation of implication and its delicate interplay with negation. While a completion
construction is possible, it may be not equivalent to the adjoining of the only-if part of the program. In
particular, it not warranted to form the negation of a program by taking the contrapositive of the completed
definition; this is intrinsically due to the operational semantic of failure: a goal D ->■ G fails iff from the
(scoped) assumption D we have that G fails. Let us try to mirror this with a logical connective:

-.(!?-> G) A D-S--G (5.1)

Similarly for parametric judgments:

-i(Vx:A.G) £ Vz:A-.G

No standard logic of negation satisfies the above rules. In particular, it is erroneous to formulate Clark's
completion using Nelson's strong negation [Nel49], which is currently held as the meta-logic of negation elim-
ination in the Horn setting [GL90, Pea90]. Indeed, strong negation brings too much duality to intuitionistic
logic as it is pushed in through connectives and quantifiers; in particular if ~ denotes strong negation, the
following holds:

~(Z>-+G) O £>A~G

~(Vx:AG) o 3x:A. ~G

5.4. MOTIVATION 77

Strong negation may be "the logic of information structures" [Wan93], as far as Horn logic is concerned,
but it is definitely not the meta-logic of negation elimination in logical frameworks based on HHF. It is
not simply a question to endow intuitionism with a semi-classical notion of negation, while preserving the
disjunction and existential property. The hard point is not negation in itself, but its interaction with a more
operational Brower-Heyting-Kolmogorov interpretation of implication.

Example 5.4 Consider the program consisting only of the clause a <— (b —> c); the standard completion
would be

a «-» (b -> c) A -ib A -ic.

Now, 'a' fails and hence '-ia' should follow from the iff-completion: still 'a' intuitionistically (yet not mini-
mally) follows, while '-<a' is logically independent exactly due to the failure of equivalence (5.1).

We explore in Section 5.5 how this issue has been investigated in the literature. This is relevant to our
enterprise because:

• In the Horn setting, the iff-completion has been the preferred way to logically motivate the transfor-
mational approach to negation, as we have seen in Section 5.1.

• In [G098] the authors persuasively argue that the unrestricted addition of NF to languages such as
N-Prolog requires the switch to a (three-valued) modal logic.

Since we need to express the negation of a predicate in the same language where the predicate is formu-
lated, we choose to restrict the set of programs we deem complementable in a novel and extensive way. This
will help to close the gap between the two poles usually associated to classic and intuitionistic logic program-
ming, i.e. the closed versus open world assumption. We will define a class of programs which extend the
current database in a specific regular way, by ensuring that static and dynamic clauses never overlap. This
property extends w.r.t. the complement program and thus has the side effect of guaranteeing the consistency
of the completion. Finally we will require every goal to conform to such a schema context. We call this
approach the Regular World Assumption (RWA). We argue next (Section 5.4) that this class of programs is
just what the doctor ordered for logical frameworks.

5.4 Motivation

Embedded implication in intuitionistic logic programming has been successfully used in various areas of logic
programming; we can roughly divide those into:

• Meta-programming, namely specifying and implementing (the meta-theory of) deductive systems.

• Hypothetical reasoning in databases [GR84, BMV89, Bon94] or simulating imperative-style program-
ming [BM90].

• Incorporating modules and local predicate definitions [M089c, GMR92, KNW93] and state encapsula-
tion in object-oriented programming [HM90].

We now try to motivate why the restriction of complementation to parametric implication (formally
defined in Section 6.5) is pragmatically adequate for our intended application.

While implementing deductive systems embedded implication is usually coupled with higher-order ab-
stract syntax to represent scoping constructs: the latter is typically used to traverse operators like abstrac-
tions, quantification and, more pervasively, to represent rules with hypothetical premises. In this application
implications are typically 'covered' by an intensional universal quantifier which express the parametricity of
the assumption. Dozens of examples can be found for instance in [Pfe92]. One counter-example I am aware
of is when using a logic framework to encode derivability in an object logic: here meta-logic contexts are
used to manage object logic hypotheses, as in Example 5.1. We feel that this case in not typical; first of all it
is questionable (and out of the scope of a logical framework) to complement recursive enumerable predicates
such as general provability. Even if we limit ourselves to decision procedures as propositional logic, we are

5.5. RELATED WORK 78

in a sense asking for a self-referential use of implication as we wish to represent implications in the object
logic with the same in the meta-logic. In this case, though we have no formal proof of this, we think we have
to use ad hoc techniques such as explicit management of hypotheses say as lists; a similar approach is taken
in [DM97].

Modules are usually closed assumptions and I doubt negation is useful at this level. Local definitions, as
an auxiliary reverse3 procedure hidden inside the naive reverse procedure are typical only in higher-order
logic programming languages as AProlog, and require full predicate quantification. We conjecture that some
of those programs can be complemented if there is no overlap between static and dynamic clauses. As far
as object-oriented programming is concerned, more recent research [BDLMOO] has now moved on to linear
logic programming languages.

The possibility to simulate the availability of global variables in logic programming has been advocated
[G098] as the main motivation of the intertwined and unrestricted use of negation and embedded implication.
We contend that sometimes that can be resolved with a refined notion of context as the one available in
linear logic programming: this has also the side-effect of by-passing the issue of non-stratification.

We now exemplify how to eliminate negation from non-stratified N-Prolog programs. We cannot say at
the moment whether this transformation can be generalized and eventually mechanized. The following
example (taken from [G098]) is a non-stratified program to compute the parity of a relation encoded as n
entries of the form r(X), where '\+' denotes negation-as-failure:

Example 5.5 (Parity)

even <— \+ odd.
odd -f- r(X), \+ mark(X), (mark(X) —> even).

We can write a Lolli program [HM94] based on the same algorithm, where the linear context contains the
entries of the relation and the initial token off; let —o and ® denote linear implication and conjunction:

even o— r(X) <g> off <g> (on —o odd),
even o— off.
oddo— r(X) <g> on <g> (off —o even),
odd o— on.

The tensors consume the relation and turn on or off the switch accordingly to the parity of the relation.

We can make a similar remark about the relative pronoun gap parsing example in Categorical Grammars
[PM90] which in [BM90] is treated with intuitionistic implication plus NF. Hodas [Hod94] has shown how
this can be dealt with much more elegantly again with linear implication.

5.5 Related Work

In the 90's there has been some interest in combining NF with what is known as intuitionistic logic program-
ming. The underlying languages, with the exception of [Har93], are either versions of N-Prolog or clausal
intuitionistic logic. Due to the inherently difficulty with universal quantification mentioned in Subsection
1.5.2, the treatment is deprived of parametric goals. The emphasis is not on the transformational approach
but to combine the non-monotonic nature of NF with the capability of embedded implication to dynami-
cally update the current program. We will not detail here the proposed semantics (stable models [Dun92],
monotonic Kripke-like models [Har89], non-monotonic perfect [BM90] or three-valued [G098] models).

Gabbay [Gab85] pointed out that NF coupled with embedded implication seems to lead to curious
paradoxes, at the point of making the whole enterprise not logically sound. These problems arise already
when dealing with (propositional) normal clauses. They can be summarized as follows (taken from [NL92]).

1. Failure of transitivity, or, in other words, non-eliminability of the cut rule. Let V be:

af-6A\+c.
b 4- c.

Now, Phc->t and V V- b ->• a, as c is undefined, but c -» o is not provable from V.

5.5. RELATED WORK 79

2. Failure of weakening. Let V be:

i»f-\+o.

Then V \- b but a —> b is not provable from V.

3. "Pathology of negative information", i.e. V h \+ (o -> b) iff "P h a -» (\+ 6).

There are several solutions to this riddle:

• A modal completion [G098].

• A syntactic distinction between implications [BM90].

• A syntactic distinction between predicates [Har93].

We detail the latter next, but let us state, for the record, our position:

1. Provability must take into account the context where the query is attempted: in case 1. the first query
is not allowed, since b is a predicate which must be called from an empty context.

2. Similarly, a -> b is not a legitimate query as b must be queried in the empty context.

3. This is indeed the operational semantics of failure of hypothetical judgments; the issue is giving a
logical justification of that and the challenge is to give it without changing the logic underneath.

5.5.1 NF in Clausal Intuitionistic Logic

We can regard Clausal Intuitionistic Logic as a close cousin of uniform proofs independently developed by
McCarthy in the late eighties [McC88a, McC88b]. NF in this setting has been investigated in Bonner's
thesis [Bon91] and is summarized in [Bon94]. The framework in [BM90] is hypothetical Datalog (with
possibly infinite constants) and embedded implications. They assume a notion of negation-stratification and
develop an awkward proof-theory parameterized by strata; a non-monotonic preferred Kripke model theory is
presented and adequacy is demonstrated. They offer the following solution to the aforementioned paradoxes:
the implication sign is really two distinct connectives, one for clauses and one for goals. Clause implication
is interpreted classically and it is transitive, while goal implication is not and must be interpreted non-
monotonically. Indeed the latter has a modal semantic which takes into account the extension of a context
as a shift in worlds (in the Kripke sense). While we favor a syntactic distinction between goals and clauses,
the uniform proof approach views implication as logical (intuitionistic) implication whose different behavior
is simply dictated by its introduction and elimination rule. Moreover we do not aim to deal with arbitrary
extensions. We have hinted in the previous section how linear logic programming can address examples in
this paper which are outside the fragment we are able to treat.

5.5.2 NF and N-Prolog

This approach has been investigated first at the propositional level in [NL92] and then for first-order N-Prolog
in [G098]:

"In order to understand N-Prolog computations with NF, we must adopt a dynamic view of
success and failure [...] we cannot determine what goals succeed or fail from a program unless
we determine what goal succeeds or fail from arbitrary3 extension of the program" [NL92] pp.
258.

The main idea is again that a computation of an implicational goal D -> G from V entails a shift
to another world where V U D holds. The authors propose a completion construction as an explanation
of negation-as-failure. The completion is formulated as an infinite theory such that compn(P) is used to
evaluate a goal G roughly if we need n extensions of the program to compute G: for example for a clause

3Emphasis is mine.

5.5. RELATED WORK 80

a 4- (b -» c) then a is provable iff comp(T U b) entails c and a is false iff comp(V U b) entails ->c. Note
that comp(P U 6) is different from comp(V) Ub or comp{V) U comp(b). Moreover, due to the possible non-
monotonicity of arbitrary extensions comp(V) and comp(V U b) may be jointly inconsistent: the modality
represents then the shift of context. The completion construction does not seem to generalize immediately to
universally quantified goals. The right kind of logic turns out to be a three-valued version of K4. The authors
prove soundness and completeness of ESLDNF derivability w.r.t. a Kripke-Kleene fixpoint construction for a
notion of non-floundering programs. The three-valued approach avoids the restriction to stratified programs.

5.5.3 NF in First-Order Uniform Proofs

Harland's thesis [Har91b] is an in-depth analysis of Uniform Proofs and NF at the first-order level. Unfortu-
nately, his approach, though sound, is not adequate to our purposes, as we shall argue next. Harland inherits
the traditional 'boolean' attitude w.r.t. the closed world assumption: predicates are either completely defined
(CWA), as in the append program, or incomplete (OWA); while this distinction, he maintains, is essentially
semantic and therefore enforced by user declarations, the latter coincide with the programs where temporary
assumptions are made, i.e. clauses with embedded implications. Thus NF would make sense only for the
former, since how will you apply the CWA to something that is by definition incomplete? Therefore those
programs would require some form of real (say minimal) negation, much as in [Mil89c, Mom92]. Technically,
this is achieved by distinguishing, for all predicates occurring in the signature, those which appear negatively
versus positively in the body of clauses. The two sets are required to be disjoint. This of course simplifies
the later development, but, unfortunately, if a predicate which appears negatively, i.e. it is assumed, cannot
occur positively, then it will never be used in the derivation. Its assumption is totally irrelevant to the com-
putation and may be discarded from the program. This fragment therefore collapses to normal programs
with extensional quantification. While it is possible to enforce differently the distinction between complete
and incomplete predicates, we are indeed interested to apply negation to incomplete predicates, although in
a restricted fashion.

Then Harland shows how to formulate the completion as a first-order HHF formulae so as to simulate NF
as derivability in the uniform proof system. The executable completion is formulated through contraposition.
Programs are assumed to be locally stratified, hence the completion is consistent. Thus Harland identifies the
completed program with its iff-completion, though he correctly has ->(D -» G) — D -> ->G. This operational
interpretation of the augment instruction w.r.t. negation is nevertheless inconsistent with its formulation in
the completion, where negation is interpreted classically insofar as the negative completion of Q <- G is seen
as -i(<3 A ->G); again this holds only because NF cannot be applied to incomplete predicates. The classical
attitude carries over to universal quantification, which is only allowed to be extensional. Harland so does not
stress the intrinsic connection between implication and parametric universal quantification. Extensionality is
achieved through covering as in [MMP88], though the role of the DC A (Domain Closure Axiom) is not made
explicit. Therefore Harland is not able to correlate extensional uniform proofs with intuitionistic provability
plus DC A. This is not surprising since its partition between complete and incomplete predicates restricts
the AUGMENT rule so that its operational provability relations are not conservative extensions of standard
uniform provability: this makes the usual proof-theoretic adequacy impossible. Moreover no operational
semantics for coverings is described: not only is the role of free variables introduced by coverings unclear,
but the extensional rules are totally non-deterministic w.r.t. the choice of the correct covering.

An equality/inequality solver on the Herbrand universe is described and used to solve inequalities stem-
ming from the completed definitions: this algorithm is different from the traditional uncover algorithm as it
does not return the most general solution but a possibly infinite enumeration of the latter; this permits not
to left linearize the program.

5.5.4 Partial Inductive Definitions

Partial Inductive Definitions ([Hal91]) (PID) are a generalization of inductive definitions [Acz77] to definiens
containing implications and in a unitary version ([Eri93]) of parametric quantification: they also incorporate
a proof-theoretical notion of closure somehow as in the CWA, but brought upon by the principle of definitional
reflection. Not every PID can be given a logical (in the broad sense) reading, see for instance the 'functional'
definition of the plus predicate in [Kre92], and this may be the source of some misunderstandings. In a logical

5.5. RELATED WORK 81

setting, following [SH93], we can take an intuitionistic sequent calculus parameterized by a set of definitions,
i.e. a finite set of clauses b 4= G, where b ranges over atomic predicates possibly with free variables. For a
definition V, we call V(a) = {oG \ b <= G € V,a = ab}. In the spirit of the "clauses-as-rules" paradigm
[HSH90, HSH91] we add for every defined atom a, the rules

ThG G€V(a) {aT,aG\-A:a = mgu{a,b),b^G eV}
 V-R V-L

T\-a r,ah A

Call this DR(V), for a given set of definitions V. The first rule corresponds to backchaining on the definitional
clauses, while the second, in its w-version, reflect the closure clause of (partial) inductive definitions. They can
be seen as right and left introduction rules for the atomic proposition (inductive definition) a. This feature
is used in the programming language GCLA [MAK91] which allows both functional and logic programming
style. Search is conducted on sequents T \- G and it is clearly not amenable of an uniform proof approach,
since focusing is impossible as at any time each of the assumption in the antecedent may be expanded via
V-L. Indeed, without mentioning the issue of contraction, control in this setting has proven to be a major
problem and this has lead to GCLA II, which is a middle ground between a logic programming language
and a tactic theorem prover [Kre92]; here the user must not only provide the program in the form of a set
of definitions, but also to what amount to a tactic (expressed itself as a PID) to direct the search and avoid
a large number of meaningless (in logical terms) answer substitutions.

One basic problem is the failure of global cut-elimination: as discussed in [SH93], in order to reduce an
atomic cut formula through the V — L/V — R reduction, we may generate a cut with a more complex definiens
formula. Definitions are called total if they enjoy cut-elimination, otherwise they are partial. Classes of total
definitions include:

• Implication-free programs.

• Contraction-free logics.

• Stratified program w.r.t. negation.

• Stratified program w.r.t. implication [DM97].

In the latter case, predicates are assigned levels: the latter are then extended to formulae, so as to
forbid recursion through negative occurrences; the level of an implication is essentially the order of its type:
definitions are allowed only if the level of the heads is strictly greater than the level of the body: for instance
a <= b —> a is allowed while a <£= a —> b is not. This excludes every left-recursive definition.

Definitional reflection has been claimed to bring in a proof-theoretic notion of negation, although it
would be more accurate to say that it allows a meta-level notion of closure. Intuitively, V — L works as
the only-if clause of the completion: a proof of I—<a is a proof of a h 1. This has been formalized by
Schroeder-Heister who has proven [SH93] the equivalence between comp(P) (formulated in a sequent style as
a left and a right rule for each completed predicate, plus a formulation of free equality again in sequent style)
and DR(P) U (x = x <= T), where the latter clause, thanks to definitional reflection, suffices to define free
equality. This result holds for any kind of definition and does not depend on cut-elimination. This has been
hailed by the GCLA group as a major benefit of allowing definitional reflection, in so far as negative goals
are simply a special case of implicational ones and therefore should be able to compute answer substitutions.
This claim has some validity as far as normal stratified programs and ground goals are concerned: indeed
they may yield only sequents such that if the antecedent is non-empty, it must be atomic and the consequent
is J_: then V-L must be used to introduce a definiens from a lower stratum. As mentioned above, search
is here cut-free. Thus for example, ->even(s(0)) is provable as follows, suppressing here any reference to the
(empty) parameter context:

-V-L
even(s{0)) \-dd{even) -L

-> R
hdef(even) even(s(0)) -»• ±

since the definiens of even(s(0)) is empty.

5.5. RELATED WORK 82

The equivalence with the completion holds irrespectively of the presence of local variables. In this remark,
then this approach would seem to have an edge on the transformational one since it does not need extensional
quantification.

Example 5.6 Consider a graph edge(a, b),edge(b, c): the deduction ofpath(b, a) h _L leads to the conjunctive
goals {(edge(b,a) h ±),(edge(b,Z) Apath(Z,a) \- ±)}, where Z is a local logic variable; then there is a
computation which reduces to ±... I- J_.

On the other hand, some of the familiar problems with negative goals arises when concerned with open
queries. When logic variables are allowed PID's give the usual unsound reading to existential queries and
one is faced again with the question of failure substitutions. For example the query ^def(even) 3x-<even(x)
yields even(X) ^def(even) -Li the rule V — L will loop, being unable to compute to what amounts, in our
terms, to Not(O) flNot(s(s(y))). In other terms, definitional reflection uses unification to consider the given
definition as a minimal inductive definition, but this does not allow to compute values that lies outside this
very definition. Although it is true that ^def(even) ^even(s(0)) and hence ^def(even) 3x .-^even(s(x)) by
3 — 7, it does not mean that the above query will retrieve the appropriate instantiation. This seems to
point to an operational incompleteness of definitional reflection w.r.t. open queries. Besides, this is only
an intellectual curiosity, since the aforementioned problems with search preclude anyway its adoption as a
mechanism to handle negation. Not surprisingly, I am not aware of any implementation of the w-rule for
the purpose of enhancing a logic language with negation, rather than to allow an idea of w-quantification.
As a matter of fact, the rule of definitional reflection used in GCLA is the weaker 'logical' version [MAK91]
which does not imply in general the completion. As Schroeder-Heister put it:

"If we want to extend logic programming with definitional reflection then the logical rule is more
adequate than the w one. The idea of successfully computing an answer substitution, which is
central to logic programming, is bound to strong closure under substitution [lifting lemma], which
holds for the [former] but not for the [latter]..." [SH93].

In fairness, Eriksson [Eri92] has proposed a even stronger rule, which encompasses the two other versions
"... of course with many algorithmic problems to efficiently compute bindings at application of [such a rule]",
ibidem.

Notwithstanding the similarity, PID's give a striking different operational semantics to HHF. Consider
for example the definition a <= b -> c: then the sequent I—>a has no cut-free proofs, while h a is provable
against the operational intuition of HHF:

 V-L
b\-c
 >-R

y-b->c
 V-R

ho

Here, since b has no definition, it is assumed to be false and hence entails anything. This means that V — L
is not conservative w.r.t. the positive fragment, i.e. the former rule may be used in proving positive atoms.
In the complementation approach instead, positive and negative fragments are disjoint and exclusive. This
is not surprising since, as mentioned above, the equivalence with the iff completion induces an operational
semantics of failure which is distinct from the one typical of HHF. Moreover definitional reflection does not
match well with parametric judgments. Consider a goal •; • ^def(open) ~*open lam(Xx.x), which is clearly
unprovable: a naive logic programming interpreter augmented with definitional reflection will eventually yield
the goal -;Vx : exp.open x \~def(open) -L- In the failed derivation of the same positive goal, a goal-oriented
strategy would introduce a new parameter and try the goal y.exp; T \~def(open) open y. Yet, the same idea
does not work when definitional reflection is allowed as now the universal in on the left and we can only do
(inverted) universal elimination. Moreover, consider now the query w.exp; T \-def (closed) closed lam(\x. w)
which should fail: yet this would yield a sequent w, y.exp; closed y \-def (closed) closed w and since V(closed y)
is empty (both under the logical and w-version), we would get the success node •, _L \~def (closed) closed w\

The main confusion, in general, may lie in attempting to give a naive goal-oriented reading to a sequent
calculus augmented with the definitional reflection rule. The latter is instead a meta-level closure operator;

5.5. RELATED WORK 83

this is indeed how it is used in meta-logics as M2 [SP98] and FOXAFf [MM97]. If we try to use it as a logic
programming engine for HHF with negation, i.e. we add introduce logical variables and dynamic assumptions,
it breaks down and reveal its meta-theoretic nature. We also remark that adopting our restriction to
complementable programs (formally introduced in Figure 6.7) would not help, as far as logic programming
is concerned. Instead, we conjecture that the proof of cut-elimination given in [MMOO] can be extended to
those programs, allowing to enhance the range of FOXA1N significantly.

Chapter 6

Clause Complementation

In this chapter we introduce the source language and its uniform proofs system. Before formalizing the
restriction to terminating programs, we establish the fundamental notion of context schema. This allows
to enforce the Regular World Assumption (RWA), on which clause complementation is built. Finally, we
discuss how to give an operational semantics to our system.

6.1 The Logic

We will use the following slightly unusual sourcejanguage. Again, we fix a signature £ in advance which
would otherwise clutter the presentation; let M,N be sequences of simple terms:

Atoms Q ::= q M \-*qM
Goals G ::= Q \T \ ±\ M = N \ M ^ N \

GiAG2\Gi\/G2\D^G\Vx:A.G\
Clauses D ::= T | _L | Q \ D <- G \ Dx AD2 | £>i VD2 \ Vx:A.D

First and foremost, we restrict ourselves to clauses of at most third-order, that is we allow HHF which
only make Horn assumptions. This simplifies the presentation of the complement algorithm, but it is not
an unsurmountable obstacle; we comment on this and other restrictions in the Conclusions (Chapter 7).
Differently form standard presentation of HHF, we do not allow existential goals. This rules out open
queries and local variables, as well as spares us from the heavy machinery of mixed prefixes [Mil92]. On the
other hand, we allow disjunction between clauses, equality and inequality. While disjunction among clauses
will be eliminated, inequalities will survive, although they will always be solvable at run-time by a simple
syntactic check, as we will see in due time (Section 6.9). This simplifies their treatment in type-theoretic
languages such as Twelf, where, in general, (in)equalities should be viewed as types inhabited by appropriate
proof terms. The tokens T, J. may be decorated with a predicate symbol, as explained in Subsection 6.1.1
and Definition 6.21. Finally, we remark that '-i' is not a connective, but a name constructor for atomic
formulae.

Parameter Contexts T ::= • | T, x:A
Assumptions V ::= T | V A D

We call a pair of concrete context and assumption T; T>, such that all parameters occurring in V are mentioned
in T, a (run-time) context. We make the usual conventions on contexts, in particular we avoid mentioning
the leading • and T elements.

We use the notation D C V A V to indicate that D is a top-level conjunct in the V or in V.

We now introduce the uniform proofs judgments for provability and denial in Figure 6.1 and for immediate
implication and denial in Figure 6.2. While the system for denial is introduced for technical reasons, namely
the proof of the Exhaustivity Theorem 6.33, it is of independent interest, since it provide evidence (that
is proof terms) for non-provability. A similar system was presented in [Har91b], although in a simplified

6.1. THE LOGIC 85

r;DhPT

M = N

T;Vhv M = N

M ^N

hT

h=

T;V\/V±

M ^N

!A

~ ^

T;V\/VM = N

M = N

- \f=

V?
T;Vhv M ^N T;V\/VM^N

T;VhpGi T;VhpG2
 hA

r; v y-v Gx A G2

T;V\/vGi

T;VVVG,

r-,vyvG2

VG2

r; v h> Gi
 I-Vi
r, 2? hp Gi V G2

T;vyvGx

T;V\/pGiAG2

\/A!

T;VVVG2
 hv2

T;VyvG2
VA2

yv

r; v \-v Gi V G2

T; (Z> A £>) hp G

r;Phj,D->G

T;Php VI:AG

h

hV^

T;V\/vGiAG2

T; (V f\D)\/vG
¥■

T;V\frD^G

(r,y:A);Vyv[y/x}G

T;V\-VQ
h atm

r;PI/pVx:yl.G

r;P^PAP»Q

i/\/y

l/atm

Figure 6.1: Provability and denial

setting without parametric judgments. We remark that the systems for denial will instead not be needed in
the proof of exclusivity (Theorem 6.32).

Due to the presence of 'V as a clause constructor, uniform proofs are not complete w.r.t. intuitionistic
logic. We will remedy this situation in Section 6.9.2. The rules are depicted (when possible) in two columns
where every row displays a positive rule and its negative counterpart.

T;V Y-p G Program V and assumption V uniformly entail G.
T;T> \/p G Program V and assumption V uniformly deny G.
T;T> hp Dy>Q Clause D from V A T> immediately entails atom Q.
T;V\/V £>»Q Clause D from V A V immediately denies atom Q.

We briefly comment on the rules: the (in)equalities rules simply mirror the object logic symbols =,jt in
meta-level (in) equality. The denial rules for implication and universal quantification reflect the operational
semantics of unprovability that we have discussed earlier. Note that ^>V is an infinitary rule, due to the
meta-linguistic extensional universal quantification on all terms. Rule ^>V must be read as: for every well-
typed term n in parameter context T, Vx:A.D immediately denies Q if so does [n/x]D. Rules h V, l/V are
instead parametric in the new eigenvariable, say y; the ()y superscript reminds us of the parameter condition
on y, e.g. that y does not occur free in T; V nor in G. We will use this notation in any other parametric rule.

Differently from the latter, we will also use 5/060/ eigenvariables, say u (see for example rule =>■ V in
Figure 6.3); this expresses the fact that in those rules the relation holds for any term; those parameters are
therefore analogous to logic variables. We will pervasively utilize this notation; however, to avoid notational

6.1. THE LOGIC 86

»-L ^>T
T; V h-v _L»Q T; V \/v T»Q

T\-t:A r;V\-p[t/x]Dy>Q
 »V

r;Php Mx:A.Dy>Q

for all n T \- n : A F; V \fv [n/x]D»Q

T;V\/vWx:A.D»Q
?t>V

r;DhpD1»Q T;V\/vDi»Q
»Ai ^>VX

T;V \-v Dx A D2»Q T;V\/V DXV D2»Q

T;V\-VD2»Q Y;V\fvD2»Q
»A2 £>v2

T;V \-v Dx A D2»Q T;V \/v A V D2»Q

T; V Y-v DX»Q T; V \-v D2»Q

r;DhpHi VD2»Q

T;V\/VD1»Q T;V\/VD2»Q

T;V \fv Dx A D2»Q

T;VhvD»Q T;V\-VG

»V

$>A

T;V\-VD^G»Q
» ->•

T;V\/VD»Q Y;V\fvG

T;V\/VD<-G»Q T;V\fv D+-G»Q

Figure 6.2: Immediate entailment and denial

6.1. THE LOGIC 87

clutter, when possible we shall not keep an explicit record of global parameters, but we agree to implicitly
gather them in a pool $, which we can access when needed, in particular to type-check substitutions, see
Section 6.2.

For the sake of conciseness we will often use in this thesis the following rule schema, where J(X, R) is a
judgment involving a token X ranging over a set T and a relation R:

X£T
RX

J(X,R)

6.1.1 T-Normalization

We show in this section how to put every program in a normalized format w.r.t. assumptions so that every
goal in the scope of an universal quantifier depends on some assumption, possibly the trivial clause T. This
has also the effect of 'localizing' the trivial assumption to its atom, a property will be very useful while
performing augmentation, see Section 6.6.

We first state some basic properties of provability.

Lemma 6.1 (Weakening)

1. IfT;V\-G, then:

(a) (T,x:A);VhG.

(b) T; (P A £>) h G.

2. IfT;V\- D»Q, then:

(a) [T,x:A);Vh D»Q.

(b) T;(VAD')\- D»Q.

Proof: A straightforward mutual induction on the given derivations. Ü

In the proof of Theorem 6.5 we will need the following form of Strengthening:

Lemma 6.2 (T-Strengthening)

1. J/r;(DAT)hG, thenT;V\-G.

2. If T;(VAT) h D»Q, then T;T>\- D»Q.

Proof: By an easy mutual induction on the structure of the given derivations. D

Normalization is realized in Figure 6.3 by the two judgments D =^> DT and Y\V \- G ^=S> GT. The
only interesting case is when we reach an atomic goal: if no parameter has been introduced, the .clause does
not require any normalization. If F; V is non-empty, we adopt a brute-force approach and add the trivial
clause for every predicate in the signature. This is largely unnecessary, but it gives a very simple account of
mutually recursion, without an explicit appeal to a call graph. As a matter of fact, we would really need to
T-normalize an atom Q with the trivial clause for every predicate that is mutually recursive to Q and such
that the type of the parameter in the context is not subordinate [Vir99] to the type of Q. On the other hand
Theorems 6.4 and 6.5 ensures, as obvious, that this program transformation is harmless, since it preserves
provability and denial. Moreover, we will engineer the rule for clause complementation so that the irrelevant
T, will be inactive. We will remove those irrelevant augmentations in a final pass (Section 6.9.2).

Example 6.3 Consider the lambda clause in the open program:

oplam : WE: exp -» exp. open (lam E)

4- Wx:exp. open (E x).

6.1. THE LOGIC

oplam =$> oplamT, i.e.

oplamT : WE: exp —> exp. open (lam E)

«- (Wx:exp.Topen -¥ open (E x)).

Consider this fragment of code involving two mutually recursive predicates:

qlam : WE: exp —> exp. q (lam E)

<- Vx: exp. p (E x).

papp : WEi:exp.\fE2'.exp.p (app Ei E2)

■f- q Ei A p E2.

Then:

qlamT : WE: exp ->• exp. q (lam E)

4- (Wx:exp.Tp A Tq —> p (E x)).

In examples, we will not mention inactive T clauses.

We start by showing that this transformation preserves run-time provability. We extend the notion of
application of a substitution, notation [t/x]F, to a formula F. More in general, we denote with [9}F the
application of 9 to F. We will also need an operation of composition, say <7i - 02, such that [o~i • ai]F =
[*2}(Wl]F).

Theorem 6.4 Let T';V' \- G £> Gr, D =^> DT, V ^> VT and Y h 9 : *.

1. IfT; [9]V h [6]G, then T; [6]VT h [9]GT.

2. IfT; [9}V h [e]D»[e]Q, then T; [6}Vr h [6]DT»{6]Q.

Proof: By mutual induction on the structure of the derivation of 7 :: T; [9]V h- [9]G and inversion on

7' :: T';V h G ^ GT together with 6 :: T; [6)V h [9]D»[9]Q and inversion on 6' :: D ^ DT. We sketch
only some cases:

Case: 7 ends in h At and 7' is At-emp: trivial.

Case: 7 ends in h At and 7' ends in => At:

T;[9]V\-[9]Q
T;[9]V \- [9](V AV)»[9]Q
T;[9}VT \-[0]V A'VT»[0}Q
T; ([9}VT A (Ap€E Tp)) h [9}V A Vr»[9}Q
r;([ö]üTA(ApeETp))h[ö]Q
r;[öpTh(ApeSTp)^[ö]Q

r; [0]P I- [9]QT

The other cases follows immediately by IH 1 and 2.

Now, the converse:

Theorem 6.5 Let T';V h G ^> Gr, D =£^ DT, V £> VT andT h 9 : $.

By hypothesis
By sub-derivation

ByIH2
By repeated Weakening

By rule h At
By rule h—>

By rule =^> At

D

1. IfT; [9)VT h [9]GT, then T; [9]V h [9)G.

6.1. THE LOGIC 89

X e {T,±} or (dis)eq
 _£^ x

- =» At-emp ; ^=> At

r; (P A Z)) h G ^> GT D^>DT

 GT

r;2)hZ)->G4oT ->GT

(r,j/:^);I?l-[y/a:]G^[»/a:]GT T

 ^y"
r;PhVa;:A.G^>Vx:yl.GT

c<

T; V V- Gi A G2 ^=> G^ A Gj

TsDI-Gi^G^ r;r>i-G2^>Gj

T; 2) 1- Gi V G2 =£*• G7 V Gj

Xe{Q,T,l}
r> '

^v

I4I

(G -> P) =^> GT -> PT

[u/i]D =^> [r//z]PT

,T

Vx:AP^Va::APT
V"

U^^ P2=^P2
T T P^P^ P2^P2

T
2
 i D1

DX/\D2^> Dj A Pj DxyD2^Djy Dj

Figure 6.3: T-Normalization

V

6.2. CONTEXT SCHEMATA 90

2. IfT; [6]VT h [9}DT»[6]Q, then T; [9]V h [6}D»[6]Q.

Proof: By mutual induction on the structure of 7 :: T; [0]VT h- [6}GT and 6 :: T; [6}V'T h [0]£>T»[0]<3, as
above but using T-Strengthening (Lemma 6.2) in place of Weakening. □

An analogous result can be proven w.r.t. failure; the latter would require T-Weakening and Strengthening
w.r.t. the (immediate) denial relation. On the other hand, the above result will suffice, if we restrict to
terminating programs as we will do in Section 6.3. First, we need to establish a theory of context schemata

6.2 Context Schemata

In this Section we address the properties of contexts1. Hereditary Harrop formulae differ from Horn clauses
in that they may dynamically extend the current signature and program; this is reflected in the provability
(and denial) relation which is parameterized by a run-time context T; V. As we have argued before (Section
5.5) we cannot obtain closure under clause complementation for the full logic of HHF, but we have to restrict
ourselves to a smaller (but significant) fragment. This in turn entails that we have to make sure that during
execution whenever an assumption is made, the latter stays in the fragment we have isolated. Technically,
we proceed as follows:

• We extract from the static definition of a predicate the general 'template' of a legal assumption.

• We require dynamic assumptions to conform to this template.

We thus introduce the notion of schema satisfaction, for which we will need the following data structure:
a schema context abstracts over all possible instantiation of a run-time context. To account for that, we
introduce a quantifier-like operator, say SOME $.£>, which takes a clause and existentially bounds its free
variables, i.e. the global parameters occurring in V. We use the following reification of schemata: do not
confuse '||', which is used to represent schema alternatives in the object language with '|' which does the
same in our informal meta-language.

Contexts Schemata S ::= o | «S||(r;SOME $.P)

Example 6.6 The schema context grammar induced by the linear predicate (Example 5.2) is as follows:

Sunear = o\\x:exp; linear(x)\\x:exp; Tunx

while a possible run-time context is

t/i:exp,y2:exp,y3:exp;THnx /\Tunx Alinear(y3)

Since every possible assumption is closed, there are no existential bindings. Consider instead the clauses for
type-checking in the simply typed calculus:

ofapp : VEi, E2: exp. VTi ,T2,T:tp.

of (app Ei E2) T2

<- of Ei (arrow Ti T2)

<-o/ E2 Ti.

of lam : WE: exp -»• exp. VTi, T2: tp.

of lam(E) {arrow Tx T2)

<- (\fx:exp.of xTx^of (E x) T2).

Then the schema context is:

S0f = o\\x:exp; SOME u itp.of x u

where 'u' is a global parameter.
xThis section is inspired by Schiirmann's treatment of similar material in his dissertation [SchOO].

6.2. CONTEXT SCHEMATA 91

We will also need to disambiguate blocks in run-time contexts; overlapping may indeed happen when the
alternatives in a context schema are not disjoint. For example, suppose we are given the following schema
and partial run-time context:

S = o\\x:exp;p(x)\\x:exp;p(x) A q(x)

y1:exp,y2:exp;p(yi) Ap(y2)

It is not uniquely determined whether, say, p(y2) is an instance of the first alternative or a prefix of
the second one. To determine that, we simply modify the provability and denial rules h At and f/ At by
'packaging' run-time contexts into blocks with a bracket operator [■]. Intuitively, a block is complete when
an atomic conclusion is reached during the deduction. It is therefore bracketed when the run-time context
is passed to the immediate implication judgment.

DCVAV (Tl; \V) Yv D»Q for every D C V A V \T\,\T>\ Vv D»Q
 h At V At

T-VhvQ V;V\/VQ

Still, we need to 'flatten' blocks, so that re-bracketing during execution will be immaterial on already
delimited blocks; we thus require the bracket operator to satisfy the following absorption-distribution law:

rrn.r'i = rn.rn
rroiAp'i = \v\/\\v~\

We are now ready to introduce schema satisfaction; this is accomplished by the following judgments:

• \=sD: clause D satisfies schema S.

• T;V\G < S: (partial) run-time context T;V together with goal G satisfies schema S.

• T;V < S: (completed) run-time context T; V satisfies schema S.

• r h T';V £ S: block T';V in context V occurs in schema S.

First, we say that a completed block occurs in a schema when the block is an alphabetic variant of some
instantiation of one of the alternatives of the schema:

ri-0: $ {Y';V')=a{Y";[6]V) Yh{T'-V')£S

T\-{T';V) e<S||(r";SOME$.P) : T \-(T';V) £ S\\{T";V)

The judgment r h 6 : $ formalizes that 0 is a valid well-typed substitution w.r.t. T.

T\-t:A T\-0:$

The:- T\-0,t/x:($,x:A)
0$

Let us now analyze the rules in Figure 6.4. The empty run-time context is an instance of every schema.
Moreover if T' and V are completed blocks which occur in S, as denoted by the block notation, then
(r, |T'1); {V A \V\) is an instance of S, provided that V is a valid clause. Thus we need to define the
instance relation simultaneously to clause (and in turn to goal) satisfaction. The judgment \=s D is merely
auxiliary to the T;V\G < S one: here we mimic the construction on the run-time schema until, in the base
case, we check whether the resulting context is an instance of the given schema.

The following Lemma ensures that when an assumption D is pulled from a legal run-time context,
i.e. which satisfies a given schema, so does D.

Lemma 6.7 IfT\V<SandD\l V, then \=SD.

Proof: By induction on the structure of the derivation of IT :: T; V < S.

6.2. CONTEXT SCHEMATA 92

X e {Q, T, _L} or (dis)eq r;2?<«S

r;p\x<<s

r;X>\G!<5 T;V\G2<S

T;V\Gi AG2 <<S

r;p\Gi<5 r;x>\G2<«s

r;X>\GiVG2 <<S

(r,2/:A);P\[2//a;]G<<S

\V

r;23\Va;:AG<<S

hsD r;(DAD)\G<5

r;D\L>^G<5

Xe{Q,T±}t ^

W.

hs X ^

N ̂ i \=sD2
NfA

hA AD2

hs A \=sD2 Nv
N-Di VD2

Ns[«/a;]£>

\=sVx:A.D
</"

N^ ;T\G<

rMr';P')e<s N^' (r;^)<<s
•;T<5 * (rjr'i);(pA[p'i)<5

Figure 6.4: Judgments T;V \ G < S, (=SD and T;V < S

6.2. CONTEXT SCHEMATA 93

Case:

•;T<5
<i

Then D = T and immediately

Case:

Subcase: D — V

Subcase: D C V"
r";P" <S

NsT

T"h(T';V')eS \=SV {T";V")<S

(r",\r']);(V" A\V'])<S
<2

By hypothesis

By sub-derivation
BylH

D

We can also show that schema satisfaction is closed under substitution:

Lemma 6.8 Let F; V < S and T h 9 : <S>.

1. If\=sD, then\=s[9}D.

2. IfT;V\G <S, then T; [9}V \ [9}G < S.

3. IfT;V <S then T; [6]V < S.

Proof: By a straightforward mutual induction on the structure of n :: \=s D, 7 :: T;T> \ G < S and
a::T;V<S. D

6.2.1 Schema Extraction

Roughly, we extract a context schema by collecting all negative occurrences in a goal. In fact, those will
be dynamically added to the static program under evaluation. This is achieved by the judgment T; V hj,
G ==> S. The latter is mutually recursive to the judgment hj> D => S which collects schemata for each
clause in the given program, as depicted in Figure 6.5. When an atomic goal is reached, the current list
of parameters and assumptions is returned, with the correct existential binding inferred from the context
of global variables. With the notation $p we mean the restriction of context $ to the free variables of V,
i.e. {u:A | u G dom($),u € FV(V)}. We make the convention to absorb schema alternatives which are
a-variants. Moreover the empty context behaves as a left and right zero element for ||, i.e. :

(r;2?||-;T) = (.;T||r;P)=r;P

Finally || is commutative.

Example 6.9 IfV is the program in Example 5.2, V =$■ x:exp; linear(x)\\x:exp;Tnnx.

We aim to show that if a schema context is extracted by a program, the latter satisfies the former. First,
we need to establish two weakening lemmata w.r.t. schema alternatives:

Lemma 6.10 If TV- T';V € S then V h T';V 6 S'\\S.

Proof: By a straightforward induction on the structure of 7T :: F;V £ S. D

6.2. CONTEXT SCHEMATA 94

X e {Q,T,±}or (dis)eq

r; v H* x =^> r; SOME $p. v
^X

T; (V A D) ho G =^> .Si £> =^> 52
 G

r;Üh*J5->G=^5i||«Si8

(r,y:A);2?h#[i//a:]G=^5
G,

G,

T;I>h»Vi:AG=i*-5

r;i>i-«Gi =^><Si r;X>r-*G2==>52

r;2?h#GiAG2=^5i||Ä

r;2? I-» Gi =i*-5i r;Dh$G2=^<S2

r;Ph<„GiV G2==»5i||52

xe{Q,T,±}

h* X =^> •; T

• ; T h* G =^> 5i I-« D =^>

A

^V

1-4 (G-> £)==>• 5x||52

hj>,u;j4 [u/a;]I> ==> 5
D

1-4 Vx A.D^S =^
V

h#£>] h4£>2==V 52

hj, #x A D2=^ 5x1152

HD, ==>Si h4J92^ 52

=^A

=^V
(-«D1vP2==»5i||62

Figure 6.5: Extracting contexts schemata

6.2. CONTEXT SCHEMATA 95

Note also that T h T';V' 6 S'\\S iff T h T';V e S\\S'.

Lemma 6.11 (Schema Weakening) LetT;V < S. Then

1. If\=sD, then\=SVs'D.

2. IfT-V\G <S,thenT;V\G < S\\S'.

3. IfT;V<S then T;V < S\\S'.

Proof: By mutual induction on the structure of n :: |=s D, 7 :: T;V \ G < S and a :: T\V < S. We show
the crucial cases:

Case:

Trivially

Case:

\=s\\s> D
■;T\G<S
■\T\G<S\\S'
\=Sl\S'G->D

Case:

T;V<S
T;V<S\\S'
r;p\x<5||5'

Xe{Q,T,±}
■K = \=s X

\=sX

, xe {Q,T,±}

l=S||S' Q
\=sX

\=SD ■;T\G<S

\=sG^D
hr+

X £ {Q,T,_L} or (dis)eq T:V<S

r;v\x <s
■\X

By sub-derivation
By IH 1

By sub-derivation
By IH2

By rule |=s->

By sub-derivation
By IH3

By rule \X

Case:

\=sD

\=s\\S' D
T;V/\D\G <S
T;(VAD)\G<S\\S'
T;V\D^G <S\\S'

7 = -
\=sD T;VAD\G <S

T;V\D^G <S
\

By sub-derivation
By IH 1

By sub-derivation
By IH2

By rule \ ->

Case:

Then immediately:

a =
■;T <S

<i

a =
;T<5||5'

<i

6.2. CONTEXT SCHEMATA 96

Case:
-

rh(r';p')e«s hs©' {T;V)<S
'' 1

(r,rr'i);(2 A\V'])<S

T;V<S By sub-derivation
T-V<S\\S' ByIH3
T\-T';V eS By sub-derivation
rf-r'iD' G5||5' By Lemma 6.10
HV By sub-derivation
\=s\\s> D BylHl
{T,\T']);{VA\V'})<S\\S' By rule <2

n

We are now ready to show that if a program yields a schema, then every instance of a clause used at
run-rime will comply with the schema. We need to generalize this statement to take into account instances
of goals as well; in the latter case, we need to synchronize the schema accumulator in 1"; V'hG^S with
the possibly incomplete run-time context Y\ V. A fortiori the result holds for compile-time contexts as well,
by taking T; V as •; T.

Theorem 6.12 (Extracted Schema Satisfaction) Let T \- 6 : $.

1. If\-9D^> S, then \=s [9]D.

2. IfT';V h» G =£*■ «S, \=sV and T;V<S, then (T, r');(PA[0]D')\[0]G<<S.

Proof: By mutual induction on the structure of -K :: D = ̂ S and 7 :: T; V h$ G =S> <S

Case:
Xe{Q, T'X> .

IT = =^X
h$X = *-;T

N;T X By rule |=s X

Case:
hj, Dj =^> 5i hj> £>2 =>■ <?2

7T = =^A

1-$ £>i A D2 =^Si||S2

hj, Di =^> Si By sub-derivation
hj> D2 =$■ S2 By sub-derivation

KPPi By IH 1
N2[Ö]D2 BylHl
NSI||52 [Q]Di By Lemma 6.11
Nsi||52 [0\D2 By Lemma 6.11
^Sllls2mD1A[6]D2 By rule (=s A
\=Sl\\s2mDiAD2) By subst.

Case: 7r ends in => V: analogously to the above.

Case: ir ends in =^> Vy: by an immediate appeal to IH 1.

6.2. CONTEXT SCHEMATA 97

Case:

Case:

Case:

•; T hj) G =4- Si hj. D =^> S2

h*(G->Z>)=£>5i||$2

^D=^>S2

(=52 [0]D

T hj> G =^> «Si
T<5i
T \ [6}G < 5i
T\[fl]G<5i||52

Nu^ [Ö]G->[Ö]I?

7 =
A" £ {Q,T,1} or (dis)eq

T';V !-* X =£» T';SOME $p-.P'
A

r';[e]2?'=ar';[öp'
r h T'; [6}V G r'; SOME $r.. P'
r;P<r';SOME$p-.D'

l=r';(SOME *„,.©') °'
Nr-jcSOME^.P') t6^'
(r, rr'l);(2>Ar[fl]2?'l) <r';SOME$p-.D'
(r,F); (2? A [öp') \ [0]X < T'jSOME $0,.2?'

(r'.^j-.D'^bz/iiG
7 =

r';P'hj, Vx:A.G
. yv

(r',y:A);V'\-^[y/x]G^S
(r,r',y:A);(VA[6}V')\[6}-[y/x]G<S
(r,r'); (VA[6]V) \ [0]Vx:A.G < S

By sub-derivation
BylH 1

By Lemma 6.11
By sub-derivation

By rule <i
By IH2

By Lemma 6.11
By rule |=s->

By hypothesis
By rule Gi

By hypothesis
By hypothesis
By Lemma 6.8

By rule <2

By rule \X

By sub-derivation
By IH2

By rule \W

Case:
T';(V' AD)\-^G^Sl \-*D

r';2?'l-#i?->G=^5i||52

h,, D =^ S2

\=s2[0}D

hs,||52 VW
T;V<Si
T'; (V A £>) h*. G Si

(r,n
(r,n

(V A [0]2>' A [0]L>) \ [0}G < Sx

(V A[0]W A[6]D)\[0]G < S1WS2
(P A [9]V) \ [6}D -+ [0]G < 5i||52

>->•

By sub-derivation
By IH 1

By Lemma 6.11
By hypothesis

By sub-derivation
BylH 2

By Lemma 6.11
By rule \ —>

Case:
r';D'hj,Gi=^<Si r';D'hj,G2

T'-:V'HG1AG2^Si\\S2

A

6.2. CONTEXT SCHEMATA 98

«

F; V hj, Gi =^ 5i By sub-derivation
r; V < 'Si By hypothesis
(r,r');(^A[ö]I?')\[Ö]Gi<51 ByIH2
(r,r'); (2> A [0p') \ [öJGi < «SiH^a By Lemma 6.11
r"; V h$ G2 ==> <$2 By sub-derivation
T;V <S2 By hypothesis
(r, T'); (V A [0]P') \ [0]G2 < S2 By IH 2
(r, T'); (V A [0]P') \ [9]G2 < Sx \\S2 By Lemma 6.11
(r, T'); (V A [0\V) \ [6)0! A [9]G2 < 5! ||52 By rule \A

«'
Case: 7 ends in ==> V: similarly to the above, to IH 2.

G

6.2.2 Context Preservation

We aim to prove that execution preserves contexts, provided that the program itself and the input goal
satisfy a schema; that is, that every subgoal which arises in any given successful or failed (immediate and
non-immediate sub-derivation) satisfies the same context schema.

Note that we have already established schema extraction (Theorem 6.12), that is we assume that V =>■ <S.
We write TT' < TT to say that n' is a strict subproof of 7r, i.e. TT' < -K if -K' < TT or ir' = IT.

Theorem 6.13 (Context Preservation w.r.t. Provability) Let\=sV andD C. (VAV). ForanyT;V<
S, if (IT ::T;VhpG andY;V\G < S) or (1 :: T;V \-p D»Q and \=sD), then:

1. for every subproof IT' :: T';V hp G' and T';V \G' <S.

2. for every subproof 1! :: T';V Vv D'»Q and \=SD'.

Proof: By mutual induction on the structure of IT :: T; T> \-p G and 1 :: T; V hp D»<3.

Case: IT = T;T> hp T: trivial.

Case:
7Ti

T;VADhpG
IT — \—\

T;VhpD^G

Subcase: IT' = IT: trivial.

Subcase: IT' < IT: then IT' <TTI-

•

TTI :: T; V A D hp G By sub-derivation
T;V\D -+G <S By hypothesis
T;T>AD\G<S By inversion
t' :: T';V' hv D'»Q and \=SD' and
TT[:: F; {V A D') hv G' and T; {V A D') \ G' < S By IH
TT' :: T'; V hp D' -»■ G' and I"; V \ D' -> G' < S By rule

Case:
7Ti

(T,y:A);Vhv[y/x]G
TT hVy

T;VhpVx:A.G

Subcase: TT' = TT: trivial.

Subcase: TT' < TT: then TT' < TTI.

6.2. CONTEXT SCHEMATA 99

7ri::(r>y:yl);X>hp[y/i]G
r;2?\Va;:AG<5
(T,y:A);V\[y/x]G<S
t' :: T'\V \~v D'»Q and \=SD' and
Tri :: (T',y:A);V \-v [y/x}G' and (T',y:A);V \ [y/x]G' < S
n' ■.:T';V'\-PVx:A.G' and T';V \ Vx:A.G' < S

Case: 7r ends in h A, h Vi, h V2: similarly.

Case:

r;Php£)»Q
I-At

Subcase: n' = 7r: trivial.

Subcase: IT' < 7r: then 7r' < t.

Subcase: ti :: T; D hP D»Q, for £> C 7>
No
TT' :: r'; V hp G' and T'; V \ G' < S and
i[:: r';P' hp £>'»Q and (=5Z?'
r';D'hPQ'andr';P'\Q'<5

Sw&case: ix v. T;VY-V D»Q, for D C I?
No
TT' :: T';£>' hp G' and T;V \G' < S and
ti :: I";©' hp £>'»Q and \=sD'
T';V'\-pQ' and r';D'\Q' < S

Case: t :: r;Z> hp ±»Q: trivial.

Case:
ti

t = •
T;2?hp Di AI?2»Q

»Ai

Subcase: 1' = 1: trivial.

Subcase: t' < t: then t' < i\\

\=sDt and 1=5 02
ti ::T\Vhv Di»Q
TT' :: T';£>' hp G' and T;V \G' < S and
ti :: r';2?' hp £>i»Q and (=5£»i
t' :: r'; £>' hp D\ A D2»Q and hs D[A £>2

Case: t ends in »A2. Symmetrical.

Case:
ti

T;Vbp [t/x}D»Q

T;V\-pVx:A.Dy>Q
»V

Subcase: t' = t: trivial.

Subcase: t' < t: then t' < ti.

By sub-derivation
By hypothesis

By inversion

BylH
By rule

By sub-derivation
By hypothesis

BylH
By rule

By sub-derivation
By Lemma 6.7

BylH
By rule

By hypothesis
By inversion

By sub-derivation

BylH
By rule

6.2. CONTEXT SCHEMATA 100

Case:

ii ::r-V\-p [t/x]D»Q
|=5Va;:A.D
Ns [u/x]D
\=s [t/u, u/x]D
it' :: T';V Vv G' and T';V \G' <S and
i[:: T';V Vv [t/x]D'»Q and \=s[t/x]D'
i' :: T';V Vv Vx:A.D'»Q and f=sVz:A.D'

(-1

T;!)^!}:^ r;phpG

T;V h-p G-+D»Q

Subcase: i' = t: trivial.

Subcase: L' < i:

Subcase: J < i\
4i :: T;V hv D»Q and itx :: T;V\-V G
\=sG->D
T;V\G<S and |=s£>
TT' :: T; V \-v G' and T; £>' \ G" < S and
4i :: r';D' Vv D'»Q and |=5£>'
4' :: T';V \-v G' -> D'»Q and \=SG' -> !>'

Subcase: i' < 7Ti: analogously.

Case: 4 ends in »V, »V: similarly.

We establish an analogous result w.r.t. denial.

» ->

By sub-derivation
By hypothesis

By inversion
By substitution

BylH
By rule

By sub-derivation
By hypothesis

By inversion

BylH
By rule

D

Theorem 6.14 (Context Preservation w.r.t. Denial) Let \=sV and D C (V A V): for any T;T> < S,
if (TT :: T;V \fv G and T;V \G < S) or (L :: V;V \fv D»Q and\=sD), then:

1. for every subproof n' :: T'; V \fv G' and T'; V'\G' <S.

2. for every subproof i' :: T';V \fv D'»Q and f=sö'.

Proof: By mutual induction on the structure of it :: T;T> \fv G and i:: T;V \fv D^>Q, similarly to the case
of provability. We show only some cases:

71"!

7T = •

T; {V ND)\fvG

T;V\/-pD^G

Subcase: it' — it: trivial.

Subcase: it' < it: then it' <iti:

T; (V AD)\/VG
T;V\D->G <S
T;VAD\G <S
i' :: T';V \fv D'»Q and \=SD' and
it' :: T; {V A D') \fv G' and T; (V A D') \ G' < S
it" :: T';V' \fv (£>' -> G') and r';T>' \ (£>' -> G') < S

v->

By sub-derivation
By hypothesis

By inversion

BylH
By rule

6.3. TERMINATING PROGRAMS 101

Case:

Subcase:

Subcase:

Case:

Subcase:

Subcase.

Case:

Subcase:

Subcase:

T;V\/VG
i = ?fc>-»i

&■

T-V\/VD*-G»Q

i! = t: trivial.

i' < L: then i' < ti:

ti ::r;P^G

T; 27 \ G < S and j=5 D
jr' :: T';27' ^ G' and T';V\G' < S and
t' :: T';V \fv D'»Q and (=5Z?'
i" :: r';27' ^, (£>' «- G')»G and ^=5(£>' <- G')

r:P^D»Q

r; P Vv D «- G»Q

t' = L: trivial.

i' < t: then L' < i\:

ti :: T;V \/v D»Q
\=sG-*D
T;V\G<S and |==sl>
TT' :: r";D' l/P G' and r';2>' \ G' < 5 and
t' :: r';P' ^ £>'»<2 and |=sD'
i" :: r';2>' (^ (£>' <- G')»Q and hs (£>' <- G')

for all nT;V\/v [n/x]D»Q
i = »V

r;V\/vVx:A.D»Q

L' = L: trivial.

i' < i: then t' < ti-

\=sVx:A.D

For all ij :: r;27 1/^ [n/a:]D»Q
For all |=5[n/u,u/a;]D
TT' :: r';V \/v G> and r';V'\G' <S and
For all ti :: T';V \/v [n/x]D'»Q and \=s[n/x]D'
i! :: r';P' \fv Vx:A.D'»Q and |=sVz:AZ?'

By sub-derivation
By hypothesis

By inversion

By IH
By rule

By sub-derivation
By hypothesis

By inversion

BylH
By rule

By hypothesis
By inversion

By sub-derivation
By substitution

BylH
By rule

D

6.3 Terminating Programs

We now introduce terminating programs. The notion of termination that we adopt is the very strong
universal one, as it is known in logic programming [SD94]. This is abstractly achieved by means of a relation
between goals or between goals and clause heads, namely '-<', with the intended meaning of UG\ [G] can
arise as a subgoal of G2 [£>]". Intuitively, a program terminates if it yields an ordering relation which admits

6.3. TERMINATING PROGRAMS 102

no infinite descending chains. This is defined in Figure 6.6. We do not commit here to actual ways to verify
the latter property. This issue is explored, in the higher-order setting, for example in [RP96]. More formally:

Ordering R ::- ■ | R, G -< D \ R, Gi -< G2

Let V =£- R and take the stable (that is, closed under substitutions) and transitive closure of JR, call it
[R]. We say that V is terminating, denoted V i, whenever [R] is well-founded.

Example 6.15 // even defines the even number, even =$> even(X) -< even(s(s(X))). Furthermore the
closure of this relation is well-founded as it can be proven say by induction on X. Consider instead the
following:

\/E:exp.VM:nat.
p (lam E) M

<- (\/x:exp.(VN:nat.p x (s N) <- p x (s N)) -> p (E x) M).

The clause is not terminating as the subgoal relation contains the pair [y/x](p x s(N) -< p x s(N)), which
yields an infinite descending chain (p y (s 0)) -< (p y (s 0)) -<

Finally , we define when a schema is terminating:

ri-zn si — oi - ; -n
o + <S||r;SOME$.2?4.

Since <J> ranges over FV(D) \ T, we verify the termination of V in the T context.

Lemma 6.16

1. IfT\-V=^R, DQV andTY- D =^> R', then R' C R.

2. Ifr\-G=^>R,G'<GandT\-G'=^ R', then R' C R.

Proof: By a straightforward mutual induction on the structure of T h D ==> R' and T h G' => R'. □

Corollary 6.17 If T h V I and D IZ V, then V h D \..

Proof: By definition, r I- V I if T \- V =^> R and [R] is well-founded; by Lemma 6.16 T h D ^ R', and
R' C R. Thus [R'\ is well-founded, and D |. D

Lemma 6.18 Let Si. IfT;V < S and D C V, then D i.

Proof: By induction on the structure of <S i, using Corollary 6.17. ü

We can now prove that if a program is terminating, a non-proof of any ground G is a denial of G; we are
going to reason classically that either there is a proof of G, or there is not such a proof. We recall that \fv

is the denial relation introduced in Figure 6.1 and 6.2.

Theorem 6.19 (Termination) LetV i andS i be a schema such that \=sV andT;T> < S: for any ground
G, if not T; V hp G, then T; V\fvG.

Proof: We generalize this to:

1. If not T; V bp G, then T; V\fvG.

2. For every D C V A V, if not T; V Vv D»Q, then T; V \fv D»Q.

We proceed by mutual induction on the goal ordering induced by V terminating and on the structure of D:
we start with 2. Since D is an instance of a terminating clause either from the program or the run-time
context, by stability and Corollary 6.18, it is terminating as well.

6.3. TERMINATING PROGRAMS 103

X e{Q,T,x } or (dis)eq
=2* X

G

T\-G G
Ri TV- D^R2 G

T\-D^G =^Ä, ,R2,G <D ->G~^
>-»

r, y:A\-G^ R

n-Vi:AG ^R, {y/x]G^Vx:A.G
» vy

TY-Gi =^ Ri T\-G2^R2

ri-Gi AG2=^ ■Ri ,R2,G\ <G1AG2,G2 -<GI AG2

ri-Gi G
Ri r\-G2=^> R2

A

rhdvGj^ RuR2,G1 -< GiVG2,G2 -< Gx VG2,

Xe{Q,T,±}

n-x=^
r h I> =^- Ä! T\-G^R2

r h (G -> D) =^> Ri,R2,G ■< D

r h [w/x]z? =^> i?
^•vu

T\-\/x:A.D =^f R

r i- A =^> Ä! r h r>2 =^> Ä2 _ i ; i p

ri-Di /\D2=^RUR2

Figure 6.6: Generation of the subgoal relation

6.3. TERMINATING PROGRAMS 104

Case: D = J_: trivial.

Case: D = T.
»T

T;V\/VT»Q

Case: D = Dx <- Gx. Either]?;P hp d or not r;P hp Gx and T;V hp Di»Q or not T;V hp DX»Q. By
termination of D\ <- Gi, G\ -< D\, hence we can apply the IH to G\: There are four sub-cases:

1. V;VhpGx Subcase
r;Php.Di»Q Subcase
T;V \-v Di <-Gi»Q By rule » ->

2. Not TjPhpGi Subcase
T;V\/vGi BylHl
T; P \-p Di »Q Subcase
T; V\/vDi<- Gx »Q By rule » -*2

3. T; P hp Gi Subcase
Not T;P hp Z?i»Q Subcase
Y-V\/VDX»Q ByIH2
T; Pl/pdf- Gi »Q By rule » ->i

4. Not T; P hp Gi Subcase
Not T; 2? hp Dxy>Q Subcase
T;V\/vDi»Q ByIH2
T;O^Dif- Gi»QBy rule By rule » -h

Case: D = D1V D2.

1. T;V hp Di»Q Subcase
I?;P hp D2»<2 Subcase
T; P hp Di V D2»<3 By rule »V

2. Y\V hp Di~»Q Subcase
Not r;Php D2»Q Subcase
T;V\/VD2»Q ByIH2
T; V\fvDxM D2»Q By rule

3. T\Vhp P2»<3 ' Subcase
Not T; 2? \/v £>i »<2 Subcase
r;2?|^I>i»0 ByIH2
T; V\fvDxSI D2»Q By rule

4. Not 17; P hp Di»<3 Subcase
Not T;Vhp D2»Q Subcase
T;V\/vDi»Q ByIH2
T;V\/VD2»Q ByIH2
T; V\/VDXV D2»<3 By rule

Case: D = Dx A D2.

1. r;£>hp£>i»<2 Subcase
r;Z>hpD2»<5 Subcase
T; P hp Di A D2»Q By rule »A

2. r;PhpDi»Q Subcase
Not T; P hp D2y>Q Subcase
T;V\/-pD2»Q ByIH2
T; P hp Di A P2 »<2 By rule

6.3. TERMINATING PROGRAMS 105

3. T;V\-pD2»Q
Not V; P hp Dx »Q
r\V\/vDi?>Q
r;Ph?fliAZ)2»Q

4. Not r;£>bp.Di»<2
Y;V\/vDl»Q
Not T;Vhp D2»Q
T;V\fvD2»Q
Y;V\fv D1AD2»Q

Subcase
Subcase
By IH2
By rule

Subcase
By IH2
Subcase
By IH2
By rule

Case: D = \/x:A.D'.
[t/x}D'»Q:

For some ground T \- t : A, T;V hp [t/x]D'»Q or for all ground t, not T;V hp

1. T;Vhv [t/x]D'»Q
T;V\-vVx:A.D'»Q

2. For all t ground not T;V\rv [t/x]D'»Q
For all t ground Y;V\fv [t/x}D'»Q
r;V\f-pVx:A.D'»Q

Case: G = T: trivially true.

Case: G - 1:

Vi-

Case: G = Q: either T; V hp D»Q or for every D not T; V hp D»Q:

1. T;V\-V D»Q
T;V\-VQ

2. Not T;V hp D»Q for every D
T;V\/V D»Q
T;VVvQ

Case: G = Gi AG2:

1 T; 2? hp Gi
T;PhpG2

T; P hp Gi A G2

2 T; P hp Gi
Not T; 2? hp G2

TjPI/pGa
T;V\/vGiAG2

3 T;V\-PG2

Not T; P hp Gi
TiPhVCx
r;Pb/pGiAG2

4. Not T; P hp Gj
r;2?I^Gi
Not T; P hp G2

T;V\/VG2

TjPh'pGiAG,

Subcase
By rule »V

Subcase
ByIH2
By rule

Subcase
By rule

Subcase
By IH2
By rule

Subcase
Subcase
By rule

Subcase
Subcase
By IH 1
By rule

Subcase
Subcase
BylH 1
By rule

Subcase
BylH 1
Subcase
BylH 1
By rule

Case: G = GlVG2:

6.4. COMPLEMENTABLE CLAUSES 106

1. r;2?hpGi
r;PbpG2

T;V\-VG1VG2

2. T;VbpGi
Not T; V hp G2

T;V\/VG2

r;V\-vG2\/Gi

3. T;VhpG2

Not T; V \-v Gi
T;VVVG!
T; £> bp G2 V Gi

4. Not T; £> hp Gi
r;2?|^C?i
Not T; V \-v G2

T;V\?VG2

T;V\/vGiVG2

Case: G = Vx:A.G': for a new parameter y, (T,y:A);'V Yv [y/x]G' or not (T,y:A);T> \-p [y/x]G':

1. (T,y:A);V\-v[ylx]G'
T;V\-pVx:A.G'

2. Not^y^jPhpty/ilG'
(r,y:^);Php[i//a;]G'
r;V\/vVx:A.G'

Case: G = £>'-> G':

1. T; (D A D') hp G
T;V hp D' -> G'

2. Not r-, (2? A D') Y-p G
T; (I? A D') \/v G'
T;V \fv D' -> G

Case: The (dis)equality case follows immediately from the decidability of the =, ^ rules.

Subcase
Subcase
By rule

Subcase
Subcase
BylHl
By rule

Subcase
Subcase
BylHl
By rule

Subcase
BylHl
Subcase
BylHl
By rule

Subcase
By rule

Subcase
By IH1
By rule

Subcase
By rule

Subcase
BylHl
By rule

D

6.4 Complementable Clauses

We restrict ourselves to programs with:

• Complementable clauses as denned in Figure 6.7.

• Rules of the form V((J «— G), such that every (input) term in Q is rigid.

• Parameters of base type and occurring only in head position, called Shallow Parameter Expressions:

SPE ex '■'■= x:a\Xx.ex

We do not formalize here the former assumptions on terms; note that the rigidity restriction applies only
to predicates mutually recursive to non-Horn ones - see the comment at the end of the proof of Theorem 6.32.
We do give a definition of complementable clause in Figure 6.7.

6.4. COMPLEMENTABLE CLAUSES 107

X e {T,l} or (dis)eq
 eg X

T; P h X compl

 — -eg At
r; T h Q compl

for all D C V : dom(r) Cipar(D) ^ 0
c#Atn

r; 2? h Q compl

f; (P A D) \- G compl r;PhP compl

r; P I- P -> G compl

(r,y:a);P h [?//:E]G compl

eg ->

cgvy
T;V\-\fx:a.G compl

T;V\-Gi compl 17; P I- G2 compl

r; P \- Gi A G2 compl

T;2? h Gi compl r;DhG2 compl

T;V\-Gi VG2 compl

Xe{T,±}

r; P h X compl

r; P h D compl T; P h G compl

cfiA

■cg\J

T\V\- D <- G compl

T;Ph [u/x]P compl

cd

cdVu

T]V\-\lx:A.D compl

T; 2? h £>x compl I1; P h P2 compl

r;PhPj AP2 compl

f; P h Pi compl T; P h P2 compl

■ cd/\

■cdV
T; P h Pi V P2 compl

Figure 6.7: Complementable clause and goal: T;P h P compl and T;P h G compl

6.4. COMPLEMENTABLE CLAUSES 108

Example 6.20 The clause encoding the introduction rule for implication in natural deduction from Example
5.1 is not complementable:

impi : nd(A imp B) <- (nd(A) —> nd(B)).

On the other hand, the following is allowed by rule eg At:

oplamT : WE: exp —> exp. open (lam E)

<- (Vx:exp.Topen —> open (E x)).

The restriction on goals and clauses yields this revised grammar:

Clauses D ::= T | _L | V(Q i- G) | Z>i A D2 | 231 V D2

Goals G ::= Q\T\±\M = N\M^N\
GiAG2 \G1VG2\D-+G\Vx:a.G

We use V(Q <- G) as a normal form for 'rules', where the quantifier bounds every free variable in Q «- G.
This has the technical advantage to provide a handle for both the head of a clause and the set of all its free
variables at the same time, which will be crucial to describe the complement algorithm. In particular, 'facts'
are represented by V(<2) <- T, although in examples we will omit to mention the body. We accordingly
specialize the immediate implication and denial rules as follows:

r h a : FV{N) \ dom(r) T; V Vv [a]N = M T; V \-v [a]G
» ->

T;Vbp V(g N <- G)»g M

for all 6 T h 9 : FV(N) \ dom(r) T VVv [B\ti = --M
>>^i

r-,vyT V(g Äf f- G)»g M

ri- a : FV(N) \ dom(r) r;P^W^7^ M r-,v\/v [a}G
1

T;V\/v\i{qN ^ G)»q M

We remark that the 'guards' in the immediate denial rules are constructed so as to make the positive
and negative judgment mutually independent. Thus /£>> —h says that a clause V(g N <— G) denies a goal
g M if for all well-typed substitutions 9 [9]N and M clashes. Rule />> -+2 instead attributes denial with
the same conclusion due to 'failure' in the body.

Clause complementation is taken definition-wise. We cluster a program in a conjunction of possibly
mutually recursive predicate definitions. We accomplish this with the following:

Definition 6.21 (F h def(?,£>))

T\-def(q,T) = T*
T\-def(q,±) = -Lg

Tr-deJ{qMQ*-G)) = V(g^G) ifQ = qM
r h def(qy(Q «- G)) = Tq otherwise

r\-def(q,D1AD2) = Ti-dej{q,D1)Ari-def{q,D2)
T 1- def(q, Di V D2) = T\- def{q,Dx)\JTh def(q,D2)

If D = V, i.e. the underlying program (seen as a conjunction of clauses), we call • h def(q,V) the siatac
definition of q and if T; P is a conjunction of a run-time context, we call the latter the dynamic definition of
q. We avoid mentioning the parameter context when it can be inferred from the context. As a special case,
an undefined predicate q, i.e. a predicate which occurs in a body of a clause but not as a head is represented
by the empty conjunction T9. Conversely ±q denotes the universal definition for q. We agree to consider Tq

(JLq resp.) as the zero (one) element for conjunction and disjunction and implicitly apply the appropriate
absorption operations; for example:

T,AV(((M ^- G) = V(g M <- G)

6.4. COMPLEMENTABLE CLAUSES 109

We overload the notation D C P in the case D C T h def (g, V A V) to indicate the relation that satisfies the
following rules:

DiCV D2HV DxCV D2CV

DQD DY/\D2CV D,V D2QV

The immediate implication and denial judgments is specialized as obvious:

T;V hp Dy>Q Clause D from T h def(q,PAP) immediately entails atom Q.
T; V \/v D»Q Clause D from T h def(<?, PAP) immediately denies atom Q.

In particular, the 'At' rules are:

DCdd{Q,PAV) \T];\V]^VD»Q

T; V Vv Q

D C def {Q, PAP) [ri; \V] \fv D»Q

T;V\/vQ

r-At

1/At

Accordingly, we also specialized the rule for schema satisfaction: we use p to denote a global substitution,
e.g. such that dom(p) is a set of new global parameters.

■\T\[p]G<S

hsV(<? «- G)»q M

It is clear that all the above rules are derived rules of inference, as can be proven by a straightforward
induction on the number of free variables in N.

6.4.1 Normalization of Input Variables

We present in Figure 6.8 the rules for normalization of input variables. Since we are currently working with
the restriction to ground goals, those are all the variables which are universally quantified in the head of
a clause. When they occur positively in dynamic assumptions, they will carry some instantiation. It helps
to simplify the presentation of the clause complementation algorithm if we forbid this kind of occurrence.
The idea it to replace every positive occurrence of an input variable in an assumption with a new (local)
universal variable, which is then constrained to be equal to the input ones.

Example 6.22 Consider the typing clause for lambda terms:

of lam : V.E: exp -¥ exp. VJi, T2: tp.

of (lam E) (arrow Ti T2)

<^(Vx:exp.of xTi -> of (E x) T2).

As T\ is an input term occurring positively in the assumption 'of x T\', normalization of input variables
inserts a new variable T and constrains it to be equal to 7\:

of lam' : \/E: exp ->■ exp. VTi, T2: tp.

of (lam E) (arrow Tx T2)

(VTitp.of x P-(-T = r1) -4

of (E x) T2).

This procedure is realized by the judgments:

• D >-> D': clause normalization.

6.5. THE CLAUSE COMPLEMENT ALGORITHM 110

• r h$ G F-> G': goal normalization.

• $;rhD4 D'\ assumption normalization w.r.t. global parameters in $.

• A;$;T h M (-»■ M',E: term M normalizes to term M' returning a conjunction of equations E1

w.r.t. bound (r), global ($) and existential (A) variables.

The first three judgments simply recur on the structure of clauses, goal and assumptions, keeping track
of bound, global and existential variables in assumptions, until we normalize an assumption V(Q ^— G): here
we descend in every term by introducing new local existential variable and binding them to the global one
via an equation E. For the sake of conciseness, we do this for the simply-typed fragment; the generalization
to the strict one is immediate. In rule >-n-p we introduce in the global context all the global parameters in
the domain of p with the appropriate typing.

It is clear, although very tedious, to verify that this transformation preserves provability and denial:

Lemma 6.23 Assume A;$;T h M i->- M',E; for every ground N, every T;V, T;T> h M = N iffT;V h
(M1 = N)AE.

Proof: By a straightforward induction on the structure of A; $; T h M t-> M', E. D

Theorem 6.24 Let T h 6 : $, $; T h V H- V, D 4 D' and V h$ G 4 G':

1. T; [6}V h [8]D»Q iffT; [0]V \- [0]D'y>Q.

2. T; [9]V h [9}G iff T; [6]V h [6]G'.

Proof: By a straightforward mutual induction on the structure of the given derivations, using Lemma 6.23.
D

6.5 The Clause Complement Algorithm

We now introduce in Figure 6.9 and Figure 6.10 the rules for static and dynamic clause complementation.
Consider a rule V(g M <- G); its complement must contain a 'factual' part motivating failure due to clash
with the head; the remainder Noto(G) expresses failure in the body, if any. Clause complementation must
discriminate whether this rule belongs to the static or dynamic definition of a predicate. In the first case all
the relevant information is already present in the head of the clause and we can, without further ado, use the
term complementation algorithm described in Chapter 4. This is accomplished by the rule Noto ->, where a
set of negative facts is built via term complementation Not(M) applied in the empty context to the (vector
of) terms in the clause head; namely A/fg.hNotfÄh ^(~"(9 N) <-T); moreover the negative counterpart of the
source clause is obtained via complementation of the body. The Partition Lemma (Corollary 4.21) guarantees
the soundness and completeness of this case.

Assumption complementation is realized by the judgment T h NotQ(£>), which can be seen as a type
directed parameter-conscious version of clause complementation. In a first approximation, we can think of
complementation of assumptions, which are by definition parametric in some x, as static clause complemen-
tation w.r.t. x. Informally, for an atomic assumption, say q M\... Mi-\ ex Mj+i... Mn, its complement can
be taken as Notofae* M\... Mi-\ Mi+i... Mn), for a shallow parameter expression ex. This is accomplished
in two main phases: first, ex is propagated in every position 1 < j < n holding a rigid term of compatible
type, but different from ex itself. This alone builds an element in the complement set. Secondly, the idea is
to can apply term complementation 'around' ex. In particular, if Mj is a variable, by normalization of input
variables, it must be a local one and term complement does not contribute anything as expected. If Mj is
a parameter expression or a compound term, we simply take the term complement of the former term, with
the notable difference of passing the current parameter context to term complement.

6.5. THE CLAUSE COMPLEMENT ALGORITHM 111

Di &D[D2A D'2 Di &D[D2A D'
 AA Av

Di A D2 4 D[A D2 Dr V D2 H- Dj V D'2

X£{T,±} • ^dom(p) \P\G & \P\G'

D
Hi #<-'

XAX V(Q <- G) 4 V(Q <- G')

X € {T, ±, Q} or (dis)eq (I\ y.A); V h* [y/x]G A [y/x]G'
 Ax 4v»

rh^lHl ri-4Vi:a.G4Va::a.G'

*;n-Z?^D' T;V/\ D H G & G'
 G

G. mi r h* (D -> G) 4 (D' -> G")

r h$ Gi 4 G; r K* G2 4 G2 r h* d 4 G; r i-# G2 4 a 2
G

H-> A H-> V
r F.f. Gi A G2 4 G; A G'2 r i-* GI v G2 4 G[V G2

A = FV{Mn) \ dom(r U $) A; $; T h Mx .-> Mf, £ä ■ ■ • A; #; T I- Af„ ►-> M^, £n
■H->->

$; T I- V(g Mn <- G) .-> V(g M£ <- £ä A ... A E„ A G)

Xe{T,±}

$; r i- £>! H» £>; $;rhD2H>z?2 ^ri-Dj ^D; $;ri-z)2h->£>2
 ,_► A (-»• V

*;TI-Di A£>2 >->Z?i A £>2 $;T h £>! V L>2 H> £>; V L>2

Z new
. fo, ; iv lv

A;$;(T,x:A) hxKx.T A; ($,u:A);r h u H» Z, Z = u (A,x:A); $;T h x M- x, T

A;$;rhMi ^Mj',^1 A;$;ri-M2^M2,£:2 A;$;(r,i:A)l-M4M',£

A;$;ri- Mi M2 h-> M{ M'2,ElAE2 A;$;T\- \x:A. M ^ \x:A.M',E

Figure 6.8: Clause, goal, assumption and term normalization

6.5. THE CLAUSE COMPLEMENT ALGORITHM 112

• NotD T — NotD -L
NotD(T) = _L NotD(±) = T

■ h NotG (G) = G'
■NotD

NotD(V(g M <-G)) = /\ V(-.(g N) <- T) A V(-.g M <- G')

Äre-hNot(M)

NotD(I>i) = D[NotD(D2) = D'2
 NotA

NotD(Di AD2) =D[Vl>2

NotD (Dl) = D[NotD (Z?2) = D'2
 NotV

NotD(J5i VJD2) =D[AD'2

Figure 6.9: Clause complementation: Noto(.D) = D'

However, not all parameters are born alike; in many situations, a parametric judgment is used simply
to descend into a scoping construct, while the parameter itself does not play a role w.r.t. provability and
denial. Consider, for example, the following program that checks whether a universal formula is a £>-clause:

form, term

all

isd

isdall

type.

(term —> form) -> form),

form —► o

VD:term -»■ form, isd (all D)

<—Vx :term. isd (D x).

This phenomenon is known in the literature under the name of subordination and has been extensively
studies in the dependent typed context [Vir99]. In the simply typed setting, this relation collapses to merely
checking whether the type of the parameters is equal to the target type of some argument of the predicate.
More formally, we say that x:A is relevant to Q if head(Q) = q, T,(q) = Ai,...,An —> o and for some
1 < i < n it holds that target(Aj) = A; we denote this with xRlq. In the above example, as term ^ form,
then x : term is not relevant to isd : form —> o. Wrt. clause complementation, if the parameter x is
not relevant to q, we do not need to build complementary facts out of it, although they would not impact
soundness, i.e. Exclusivity (Theorem 6.32).

We concentrate on rules NotaT and Nota -». The notation [ex/Zi]Zn is an abbreviation for
Z\... Zi-i ex Zj+i... Zn, where the Z's are fresh logic variables; similarly for [ex/Zi, N/Zj]Zn. The main
loop goes as follows:

• Choose a parameter x:a £ T.

• Propagate ex in every 'odd' position.

• Locate a type A{ such that x is relevant to Q at i:

— Complement D w.r.t. x and i.

- Repeat for every relevant position i.

• Repeat for every x.

Rule Nota —>■ is the most complicated one: fixed a parameter x, there are two ways in which an atomic
assumption q Mi... Mj_i ex Mj+i... Mn, needs to be complemented. First, any atom with same head with
a term Nj = ex for i ^ j is in the complement of the former. Moreover, since they do differ in one coordinate,

6.5. THE CLAUSE COMPLEMENT ALGORITHM 113

rhNotQ(i.) = T

S(g) = Ai -> > A„ -> o

Nota-L

NotQT
rhNota(T,)= /\ (/\ ri-Not^(T,))

n-NotG(G) = G'

r I-Nota(V(gMB «-<?)) = (/\ r h Not^(9 M„) A (/\ ri-Noti(gMn)))AVHM„)<-G')
igdom(r) l<!<n,i/J'g

rhNotQ(Di) = D[r h NotQ(D2) = D'2
 NotA

r I- Nota(Z?i A D2) = D[V D'2

r h Nota(I?i) = D[r h Nota(D2) - D'2
 NotV

r h NotQ(Di v r>2) = £>i A r>2

r h Mi : Ai rigid,- h sh(x,Ai) = ex,M; ^ ex

r I-Not£(9 JEQ = /\ VZ1:yl1....VZ„:An.-.g[eI/Zi]Z;

Not Q

r h Not?

Kt<n

— - Not!

r h Noti(9 JW^) = /\ (/\ (VZ1:A1....\rZn:An.-*q[ex/Zi,N/Zj]Z^))
l<j<n Af6(ri-Not(Af,-))

r,y:^ h sh(x,B) = ex

n-s/i(i,a)=i T h s/i(i,A-> ß) = Ay:yl. ex

Figure 6.10: Assumption complementation: T V- Nota(£>) = D'

6.5. THE CLAUSE COMPLEMENT ALGORITHM 114

we may as well leave open every other term. This is encoded in rule T h Not^. Of course, we have to make
sure that Nj is not flex and that the type is appropriate. Since x is passed as a parameter, the T h sh(x, A)
judgment builds a shallow parameter expression as required by the type of the position in q where it ought
to occur.

Secondly, we have to take into account the case M, = ex: here we can build a set of complementary
facts by pivoting on ex and making another position different. Luckily, we can achieve this via a call to
term complementation and build a set of complementary facts similarly to clause complementation. The
difference is that we pass to term complementation, as a context, the set of parametric bound variables.
Finally, both processes are repeated for every M».

Notice the different treatment of the trivial clause T by rules NotoT and NotQT: if no parameter has
been assumed, then T truly stands for the empty predicate definition and its complement is the universal
definition ±. If, on the other side T is not empty, it means that Tq has been introduced during the T-
normalization preprocessing phase and has been localized to the predicate q. Here we need to construct
a new negative assumption w.r.t. q, x, i in case Tq is the only dynamic definition of q. As Tq carries no
information at all concerning q, the most general negative assumption is added. This is accomplished again
by rule T h Not^ , where we make the convention to view Tq as a degenerate case of q Mn where the sequence
Mn is empty (and thus the condition trivially satisfied).

The remaining (common) rules for static and dynamic clause complementation simply recur on the
program respecting the duality of conjunction and disjunction w.r.t. negation. This a somewhat delicate
point and therefore we discuss it in some details. Intuitively, negative clauses stemming from the complement
of the definition of a predicate need to be considered simultaneously. In fact, if an goal is unprovable from
its definition, then its negation must be provable from the complement of each clause of its definition;
symmetrically if it is provable, then its negation must be unprovable from the complement of at least
one. What we have described coincides the operational semantics of an operator, which works exactly as
disjunction. This is arguably at odd with the commonly held goal-oriented interpretation of the sequent
calculus as uniform proofs, since case analysis makes the latter incomplete w.r.t. minimal logic (but see
[NL95] for ways to incorporate the former in the framework of uniform proofs). In Section 6.9.2 we will show
how to 'compile away' all occurrences of V in clauses. This is an higher-order equivalent of the intersection
operator '@' described in [BMPT90] and will restore completeness of uniform proofs

Goal complementation, that is the judgment NotQ(G) depicted in Figure 6.11 is straightforward, since
it only brings the body into a normalized format; namely, in what we may call parametric negation normal
form, to stress the distinction from classical negation normal form or even from negation normal form in
constructive logics as extension of intuitionism with strong negation [Nel49]. This re-iterates the problem
with strong negation we have hinted in Section 5.3; negation is pushed inward but jumps over parametric-
hypothetical judgments to respect the operational interpretation of unprovability.

As a final remark, we note again that we must take the complementation of a program, seen as a
conjunction, predicate definition-wise rather that clause-wise. In fact, it would be incorrect to simply negate
a program as it would introduce disjunctions rather than conjunction among predicate definitions. The same
remark applies to the 'dynamic' program V. Formally, given a fixed signature E-p and a program V:

NotD(7>) = f\ NotD(def(g,P))

Similarly for a (possibly run-time) context T; V:

ri-Nota(P) = A r^Nota(def(?,£>))

Note that if T;V is a run-time context, it consists of a conjunction of blocks, i.e. it has the form
r", |T'];X>" A \V\; in this case the definition of q consists of the conjunction of the definition for every
block, namely: V \~ dei(q,V) AT" h dei(q,V"). We abbreviate NotD(def(q)) in def(-.g). If V+ is the source
program, we use V~ for NotoCP+).

Finally, we provide an example, which, even though is somewhat a special case of the general procedure,
assumption complementation being trivial, it helps to clarify the rules for clause and goal complementation

6.5. THE CLAUSE COMPLEMENT ALGORITHM 115

NotG T NotG -L
n-NotG(T) = _L rhNotG(-L) = T

 ~ Z Not = ——z Z Not ^
T h NotG(M = N) = (M ^ TV) T h NotG(M ^ N) = (M = N)

rhNotG(Q) = -Q

r,y:ahKotG({y/x}G) = [s/W ^
rhNotG(Vz: a.G) = Va;:a.G'

rh NotG(G1) = Gi rhNotG(G2) = --G'2

rhNotG(Gi AG2) = Gi V G2

rh NotG(Gi) = Gi rhNotG(G2) = -G'2

rhNotG(Gi VG2) = G[AG'2

r h Not(3(G) = G'
 —NotG ->

NotA

NotV

rhNotG(D-^G) = £>^G'

Figure 6.11: Goal complementation: T \- NotG(G) = G'

in isolation. We refer to the next Section (6.6) for more complex examples. We use VFi,F2 : A.X as an
abbreviation of VFi: A. VF2: A. X.

Example 6.25 A X-expression is closed if it has no occurrence of free variables; let z : exp be a constant:

cloz

clolam

cloapp

closed z.

\/E: exp. closed (lam E) •<— (Vx:exp. (closed x —► closed (E x).)

V.E1 :exp.ME2 :exp. closed (app E\ E2) <- closed E\ A closed E2.

Now, def(closed) = cloz A clolam A cloapp. Note that x:exp h Nota (closed x) = T. Therefore:

def(^closed) = Note (cloz) V Noto (clolam) V Noto (cloapp)

where:

NotD (cloz) = f\ -^(closed N)
/Ve-I-Not(z)

= (VF:exp. -^closed (lam F)) /\^F\,F2: exp.-^closed (app F\ F2).

NotD(clolam) = f\ V(->dosed N) A
W€-HNot((am E)

VU:exp. -^closed (lam E) <— NotG (Vi: exp. (closed x —► closed (E x))

= -iclosed z A (VFi, F2: exp. -^closed (app Fj F2)) A

\/E:exp. -^closed (lam E) «— (Vx:exp. (closed x —> ^closed (E x)).

Noto (cloapp) = f\ -^(closed N) A
ATe-l-Not(app Ei E2))

6.6. AUGMENTATION 116

Xe{T,±}
: augDX

augD(X) = X

O«SD(£>I) = Dl augD(D2) = Da
2

augD{Di AÖ2) = öjAD2°

augD(D1) = Da
1 augD(D2) = Da

2

augD(DlVD2)=DlVD^

T;V\-augG([p]G) = [p\Ga

augD/\

augD\J

augD 4-p

augD(V(Q *-,G)) = V(Q <- Ga)

Figure 6.12: Clause augmentation: augD(D) = Da

\/Ei,E2 :exp. -^closed (app Ei E2) <- Note {closed Ei A closed E2)

— -<closed z A (\/F:exp. -<closed(lam F)) A

\/Ei,E2 :exp. -'dosed (app Ei E2) <— -^closed Ei V ->closed E2.

If you want to see the definition simplified, please skip to Example 6.39 and the final result in Example
6.43.

6.6 Augmentation

Now that we have discussed how to perform clause, assumption and goal complementation, we synchronize
it together in a phase we call augmentation, which simply inserts, at compile-time, the correct assumption
complementation in a goal and in turn in a clause. We give one judgment to augment a program, augD(D),
depicted in 6.12. which merely recurs on the structure of clauses until it calls goal augmentation, T;V V-
augG(G) (Figure 6.13). The latter traverses a goal collecting parameters in T and assumptions in V. When
it reaches an atom, either it stops, as no parameter has been introduced, or it passes T,V to assumption
complementation.

Some examples will make the whole process clear; consider the copy program on A-terms:

cpapp : VEi,E2,Fi,F2:exp.

copy (app Ei E2) (app F1 F2)

<- copy Ei Fi

4- copy E2F2.

cplam : \/E: exp —¥ exp. VF: exp —» exp.

copy (lam E) (lam F)

<r- (Vx: exp. copy x x

->■ copy (E x) (F x)).

The augmentation judgment augD(cplam) calls • h augG(\/x : exp. copy x x ->• copy (E x) (F x)), which
collects the context x:exp;copy x x and calls x:exp h Nota(copy x x). We start by observing that T h
Not^(copy x x) = T, since the conditions on rule T h Not^7 are not satisfied. Then, note that x:exp h
Not(x) = {lam F',app Fi F2}. This yields:

x:exp h Not* (copy x x) = (VF', Fi,F2:exp. ->copy x (lam F') A -^copy x (app Fi F2))

Symmetrically:

x:exp\- Not%(copy x x) = (\/F",F3,Fi:exp.-'Copy (lam F") x A-'Copy (app F3 F4) x)

6.6. AUGMENTATION 117

X 6 {T,±} or (dis)eq
■ augGX

T;V\- augG(X) = X

 augG AtT

•;T h augG(Q) = Q

rhNotQ(£>) =V-

T;V \- augG{Q) = Z>„ ->■ Q

T;(VAD)\-augG(G) = Ga

augGAt

T-V\- augG(D -> G) = D -> GQ

(r,y:o);Z? h ou5o([y/a:]G) = [2//rc]GQ

au#G

augGVy

T;V\-augG{Vx:a.G) = Vx:a.Gl

Y;V h au<te(Gi) = GJ r;Dh au<7G(G2) = G£

r;Ph au5G(Gi A G2) = GJ A G£

r;Phau5G(G1) = G? T;V \-augG(G2) = Ga
2

T;V\-auga(Gi VG2) = G?VG^

augGA

augcy

Figure 6.13: Goal augmentation: T;T> \- augG(G) = Ga

This will yield the augmented clause:

augD(cplam) : VF:exp —» exp. VF:exp —> exp.

copy (/am F) (/am F)

«— (Vx:exp.

(\/F',F",F1,F2,F3,F4:exp.

-^copy x (lam F1) A -^copy x (app Fi F2) A

-'copy (lam F") x A -^copy (app F$ Fj) x)

—»• copy x x —>• copy (F x) (F x)).

while of course, augD(cpapp) = cpapp, as enforced by augGAtT. If we had a two-parameter version of copy:

cplam' : VF: exp —> exp. VF: exp —> exp.

copy' (/am F) (/am F)

«— (Vx: exp. Vy: exp. (copy' x y)

-> copy' (F x) (F j/)).

Then we would get first:

T h Not£ (copy' x y) = (VF" :exp. ^copy' E" x)

Not£(copy' x y) = (VF":exp. -.copy' y F").

Secondly, by computing, respectively, for T = x:exp,y:exp, F \- Not(y) and T h Not(x):

T h Noti (copy' x y) = (\/F0,Fi,F2:exp.-^copy' x (lam F0) A ^copy' x (app F\ F2) A -<copy'x x)

T h Notf (copy' x y) = (VFJ, F[,F'2:exp. ^copy' (lam FQ) y A -icopy' (app F[F^) y A -.copy' y y)

6.6. AUGMENTATION 118

yielding the augmented clause:

augD(cplam') : VJB:exp -> exp. \/F:exp -► exp.

copy' (lam E) (lam F)

<— (Vx:exp.\/y:exp.

(VE': exp. ->copy' E' x) A

(VJF" :exp. ->copy' y F') A

V(-icopy' x (lam FQ) A -icopy' x (app F\ F2) A -*copy'x x A

-■copy' (/am i^) 2/ A -icopy' (app F[F2) y A -.copy' 3/ 3/)

-» copy' x y -» copy' (E z) (F y)).

Note that by static analysis of copy', we know that x will never end up in the second argument of copy' and
symmetrically this applies to y, too. Thus the call to T h Notx , Not^ are, in this case, useless; however since
this kind of data flow analysis is in general undecidable, the augmentation procedure inserts the negation of
a clause for every 'odd' position relevant to the pivot parameter. Now, consider the typing clause for lambda

terms:

of lam : VE: exp -»• exp. V7\, T2: tp.

of (lam E) (arrow 2\ T2)

<- (Vx:exp. 0/ a; Ti -> of (E x) T2).

As T\ is an input term, normalization of input variables inserts the appropriate equation, where of lam t-t
oflam':

of lam' : VE: exp -» exp. VTi, T2: tp.

of (lam E) (arrow 7\ T2)

(VT:tp.of xT<r-T = T1)-+

of (E x) T2).

Both T h Not^ and Not* generate no contribution; in particular x:exp V- Not*(VT:£p. of x T) calls the Not*
rule, but term complementation (applied to the existential variable T) yields the trivial clause. Therefore,
by Note (2" = Ti), augmentation will result into:

augD (of lam) : VE: exp ->• exp. VTi, T2: tp.

of (lam E) (arrow I\ T2)

•f- (Vx: exp. of x T\ —>

(yT:tp.-*f x T +-T ?Ti) ->

of (E x) T2).

Consider now a predicate which counts the number of bound variables in a lambda-term:

cntlam : VE:exp —> exp.VN:nat.

cut (lam E) N

<- (\/x:exp.cnt x s(0) —>

cut (E x) N).

The call to x:exp r- Nota(cni x s(0)) leads to Not*(cn£ x s(0)), since, again, V \- Not^ does not contribute:
Not1, collects the term complement of s(0) in the context, x : exp, but the typing discipline constrains the
result to be {0,s(s(M))}, as expected:

augD(cntlam) : VE:exp —> exp.VN:nat.

cnt (lam E) N

«- (\/x:exp. (pent x 0 A \IM:nat. -^cnt x s(s(M)))

-> cnt (E x) N).

6.6. AUGMENTATION 119

Let us see how rule NotoT enters the picture: recall the T-normalized linx lambda clause:

linxlam : VE:exp -> exp —> exp.

linx (Ax. lam(Xy . E x y))

«— (Vz :exp. Tlinx —> linx (Ax . E x z)).

The judgment z:exp; Tnnx r- augG(linx E x z) triggers the rule NotaT; in turn ■ \- sh(z, exp —> exp) = Xy .z
and thus z:exp r- NotJ(Tjinj) = -ilinx (Ax . z):

augD(linxlam) : WE:exp -> exp —¥ exp.

linx (Ax . lam(Xy .Exy))

«- (Vr: exp. -ilinx (Ax .z) -> linx (Ax . £ x z)).

Example 6.26 Let us apply the complement algorithm to the linx predicate definition; note the vacuous
application E^ x°:

linxx

linxapl

Hnxap2

augD(linxlm)

linx(Xx .x).

linx(Xx . app (Ei x) (E> x0)) <- linx(Xx . Ei x).

linx(Xx. app (E\ x°) (£2 x)) <— linx(Xx. E2 x).

linx(Xx . lam(Xy . E x y)) <— (Vy.exp. Tnnx —> linx(Xx . E x y)).

Notv(def(linx)) =

Noto(^nxx) V Noto(Hnxapl) V Noto{linxap2) V Notc,(linxlm) =

(-i/mx(Ax. app {E\ x) (E2 x)) A ->/mx(Ax. lam(Xy . (E x y)))) V

(-i/znx(Ax. x) A -*linx(Xx. lam(Xy . (E x y))) A -ih'nx(Ax. app (Ei x) (E2 x1))

A ->Zmx(Ax. app (E\ x) (E2 x0)) <— -^linx(Xx.E\ x)) V

(->/mx(Ax . x) A ->/mx(Ax . lam(Xy . (E x y))) A ->/mx(Ax . app {E\ x1) (E2 x))

«— -ilinx(Xx. app {E\ x°) (£2 x)) <— ->/mx(Ax.ZJ2 x)) V

(-i/mx(Ax.x) A -'linx (Xx . app {E\ x) (£2 x))

A ->/mx(Ax .lam(Xy . (E x y))) <- (Vy :exp. -ilinx(Xx. y) —> ->/inx(Ax . E x y))).

We prove that augmented clauses and goals satisfy the augmented schema, where we define T;augD(D) as
r; V A -iV, for T h Nota(£>) = ->T> and

■ augo
aug(o) = o

aug(<S) = Sa augD{V) - V

aug(S\\(T;SOME $.2?)) = <Sa||(r;SOME $.£>a)

Now, the usual lemma on schema membership:

Lemma 6.27 IfT h r';Z>' G 5 then T h r';au5D(£>') G aug(S).

Proof: By induction on the structure of IT :: T; V € S.

r h 0: * (r'; V) =a (r";02?)
 Gi
r h (r'; V) G 5||(r"; SOME $. v)

aug\\

6.6. AUGMENTATION 120

T';V =aT";[e]V
r';augD(V')=aT";[6]augD(V)
r';aupD(P') e auff(cS)||r";SOME §.aug0{V)
Y';augD{V') € aup(«S||r";SOME i.V)

Case: n ends in €2: by IH.

By sub-derivation
By definition

By rule 61
By rule aug\\

D

We use \=s* augD(D) for h augD(D) = Da and |=s« i?°; analogously for augG(G).

Lemma 6.28 (Schema Augmentation) Let T;V < S and aug(S) = Sa. Then:

1. IJ\=SD, then \=s°augD{D).

2. IfT;V\G<S,thenT;V\augG(G)<Sa.

3. IfT;V <S then T;augD(V) < Sa.

Proof: By mutual induction on the structure of 7r :: hs-D, 7 :: T;V \ G < S and a :: T;V < S. We show
the crucial cases:

Case:
Xe{Q,T,±}

■K = hs x
\=sX

Immediately T;V \- augD(X) = X and

Case:

■K = ■

XE {Q,T,1}

■;T\\p]G<S

NsV(G->g)

\=sX

K->"

■;T\[p]G<S
■;T\augG([p}G)<Sa

\=s* augG([p]G) -> [p]Q
t=s«augD(V(G^Q))

By sub-derivation
ByIH2

By rule \=s~*
By rule augD -»

Case:

7 = -
X G {T,_L} or (dis)eq r;£><<S

T;V\X <S
■\X

T;V<S
T;augD(V) < Sa

T;V \- augG{X) = X
T;augD(V)\X<Sa

By sub-derivation
ByIH3

By rule augGX
By rule \X

Case:

7
T;V<S

\At
T;V\Q<S

By sub-derivation T;T> < S; there are two ways to augment an atom:

Subcase: •; T h augG(Q) = Q:

6.6. AUGMENTATION 121

T<«SQ

T \ Q < Sa

T\augG{Q)<Sa

Subcase: T;V\- aug(Q) = NotQ(2?) -> Q:

T;augD(T>) < Sa

T;augD(V)\Q<Sa

r;V/\~Nota{T>)\Q <Sa

T-V\ NotQ(P) -> Q < Sa

r;V\augG(Q)<Sa

Case:
\=sD T;VAD\G <S

T;V\D->G <S
\

Case:

HD
\=s«augD{D)
T;VAD\G <S
T;VAD\augG(G) < Sa

r;V\D->auga(G) < Sa

r;V\augG(D->G) < Sa

Then immediately:

a =
•;T <S

<i

a = <i

Case:

a =

T-V<S
r;augD(V) <Sa

T\-T';V' €S
T';augD(V')GSa

\=s° augD(D')
(r, \r']);augD(V) A augD(\V')]) < Sa

(T,\r'));augD(VA\V'])<Sa

•;T <Sa

r\-(T';V)eS |=5 2?' (T;V)<S

(T,\r']);(VA\V'])<S
<2

By rule <i
By rule au<7GAtT

By rule \At

ByIH3
By rule \At

By def. of augD(D)
By rule a?i^GAt

By rule \ ->

By sub-derivation
By IH 1

By sub-derivation
ByIH2

By rule \ ->
By rule augG —>

By sub-derivation
By IH3

By sub-derivation
By Lemma 6.27

By sub-derivation
BylH 1

By rule <2

By rule augDA

D

The following Lemma ensures that augmented clauses are closed under negation. In particular, for
r;P<<S0,if£»eP1soisrhNotQ;(£)). Weuser;£>\NotG(G) < Sa for NotG(G) = G^ and r;Z>\G^ <Sa.
Similarly for NotoOD). We will need the following technical remark:

Remark 6.29 If M is a simple term, then \=s° A/veNotrA/) ^(~"(l N) <- T).

Proof: By rules \=s* A, (=5 V, f=s°->, \T, [=5 At, \At. D

Lemma 6.30 (Negative Schema Augmentation) Let T;T> <Sa. Then:

1. If\=s°augD(D), then \=SaNotD(augD{D)).

6.6. AUGMENTATION 122

2. IfT;V\augG{G) < Sa, thenT;V\NotG(auga(G)) <Sa.

Proof: By mutual induction on the structure of 7r:: \=s* augD(D) and 7 : :T;V\augG(G)<Sa.

Case:
7T = |=S« -L

|=s«au0D(±)

By rule augD(±) = ± and h Noto(-L) = T: thus
>

*'=-—N-T

♦ Case:
7T = (=5° T

\=s°augD(T)

By rule au<7D(T) = T and h Noto(T) = ±: thus

TT'=- hf-L
N--L

Case: 7r ends in (=5« augD(V(q M <- G)):

hs° (V(g M) <- o«ffG(G)) By rule augD —>•
■;T\augG([P]G)<Sa By inversion on rule (=5—>■
■;T \KotG(augG([p]G)) < Sa ByIH2

h>« [p](^q M) By rule |=s« At

hf. V(-.g M «- NotG(aup0(G))) By rule \=s°-+

Ns»A^eNot(Ji?)V^(9^)) By Remark 6.29

Ns« AN€Not(M) VH<? ^) <" T) A V(-.g M <- NotG(auffa(G))) By rule \=s° A

hs«NotD(V(<z M) +- auflG(G)) By rule NotD ->
hs« NotD(auft,(V(g M «- G))) By rule aupD —>

Case: 7r ends in \=s* augD(Di AD2):

|=5. aug^Di) A augD(D2) By rule augDA
\=s°augD(Di) and t=5«augD(D2) By rule |=5 A
f=5«NotD(au0D(-Di)) and |=5«NotD(au3D(.D2)) BylHl
|=5« NotD(aii0D(Di)) V NotD(ait5D(£>2)) By rule (=5 V
(=5« NotD(augD{Di) A augD(D2)) By rule NotoA
\=s°NotD(aug0(D1AD2)) By rule augDA

Case: ■K ends in |=s« aitpD(D\ V Z?2):

=■ |=5« augD(Di) V augD(D2) By rule augDV
|=5« augD(Di) and |=5«au#D(.D2) By rule \=s V
(=5«NotD(au5D(Di)) and (=5«NotD(awffD(-D2)) BylH 1

. |=5« NotD(augD(Di)) A NotD(ou3D(£>2)) By rule (=5 A
[=5« NotD(aupD(I>i) V augD(D2)) By rule NotDV
(=5«NotD(au5D(£>iVZ)2)) By rule auguV

Case: 7 ends in T;V \ auga(T) < Sa:

T;V\T <Sa By rule augcT
V;V<Sa By sub-derivation
r;2?hNotG(T) = ± By rule NotGT
r;X>\±<<Sa By rule \±

6.6. AUGMENTATION 123

Case: 7 ends in T; V \ augG{±) < Sa:

T;V\±<Sa

T;V<Sa

r;PhNotG(±) = T
T; V \ T < Sa

Case: 7 ends in T; V \ augG{M = N) <Sa:

T;V\M = N <Sa

T;V<Sa

r;Ph NotG(M = N) = (M ^ N)
T;V\M^N <Sa

Case: 7 ends in T; V \ augG(M jt N) <Sa:

Y;V\M ^N <Sa

T;V<Sa

r;Ph NotG(M j& N) = (M = N)

T;V\M = N <Sa

Case: 7 ends in T; V \ augG(Q) < Sa:
By sub-derivation T;V < Sa; there are two ways to augment an atom:

Subcase: •; T h augG{Q) = Q:

T \ Q < Sa

T\^Q<Sa

T\NotG(Q)<Sa

T \-NotG(augG(Q)) < Sa

Subcase: F;V h alg(Q) = Nota(P) -> G:

T;V\Nota(V) -+Q <Sa

T;(VA-Nota(V))\Q<Sa

r;(PANotQ(P)) <Sa

T;{VAKota(V))\-iQ < Sa

T;V\Nota(T>) -¥ -*Q < Sa

T;V\ NotQ(V) -> NotG(Q) < Sa

T; P \ NotG (Nota (X>) -»• Q) < Sa

T;V\NotG{augG(Q))<Sa

Case: 7 ends in T; V \ augG(D -+G) < Sa:

T;V\ augD(D) -> augG{G) < Sa

1=5° augD{D) and T; (2> A D) \ augG(G) < Sa

T; (V A ousD(D)) \ NotG(augG(G)) < Sa

T;V\augD(D) -> NotG(ausG(G)) < Sa

T;V\ NotG(augD(D) -+ augG(G)) < Sa

T;V\ NotG (augG(D -»• G)) < <Sa

By rule au<7G-L
By sub-derivation

By rule NotGl
By rule \J_

By rule augG =
By sub-derivation

By rule NotG =
By rule \ ^

By rule augG ^
By sub-derivation

By rule NotG ^
By rule \ jt

By rule \At
By rule NotGAt
By rule NotG ->

By rule augGAtT

By rule ou^GAt
By rule \ ->

By sub-derivation
By rule \At
By rule \ -»

By rule NotGAt
By rule NotG ->
By rule oupGAt

By rule augG —>
By rule \ ->

ByIH2
By rule \ -¥

By rule NotG ->
By rule aupG —>

Case: 7 ends in T;T> \ augG(Vx:a.G) < Sa:

6.7. EXCLUSIVITY 124

T;V\\/x:a.augG(G) < Sa

(r,y:A);V\[y/x]augG(G)<Sa

(r,y:A);V\[y/x]NotG(augG(G)) < Sa

T;V\\/x:a.'NotG(augG(G)) < Sa

r;£>\NotG(V:r:a.auffG(G)) < Sa

T;V\NotG(augG(Vx:a.G)) < Sa

By rule augG\f
By rule \V

ByIH2
By rule \V

By rule NotGV
By rule augG V

Case: 7 ends in T; V \ augG(Gi V G2) < Sa:

F;V\ augG (Gi) V augG (G2) < Sa

r;V\augG(Gi) < Sa and T;V \ augc(G2) < Sa

r;X>\NotG(augG(G1)) < Sa and T;V\NotG(augG(G2)) < Sa

T;V\ NotG(auffG(Gi)) A NotG{augG(G2) < Sa

T;V\ NotG(auffQ(Gi) V augG(G2))< Sa

r;P\NotG(aupG(G1 VG2))<Sa

Case: 7 ends in T; X» \ augG (Gx A G2) < 5a:

r;2?\auflG(Gi)AawgG(G2) < 5a

r;P\auffG(Gi) <5a and T;V\augc(G2) < Sa

r;Ü\NotG(auffG(Gi)) <5a and T;D\ NotG(aw5G(G2)) < Sa

T;V\ NotG(auso(Gi)) V NotG(auöc(G2) < Sa

T;V\ NotG {augG(G:) A ougG (G2)) < 5n

r;r> \ NotGCaugcCGi A G2)) < 5a

By rule augGV
By rule \V

ByIH2
By rule \A

By rule NotGV
By rule augGV

By rule augG/\
By rule \A

ByIH2
By rule \V

By rule NotGA
By rule augGA

We can combine the two latter lemmata 6.28 and 6.30 to prove that augmentation guarantees that static
and dynamic clauses are closed under complementation.

Corollary 6.31 (Closure under Complementation) If\=sD, then \=s<>Not-[)(augD(D)).

6.7 Exclusivity

We are now in the position to prove the main result of this Chapter, namely that clause complementation
satisfies the boolean rules of negation, in the form of exclusivity and exhaustivity. We remark that this holds
due to the fact that context schemata allow to pose only 'well-behaved' goals. For example, consider the
query G = -<even(0) -4- even(s(s(0))), which is such that both -;T \-even G and -;T \--,even NotG(G) are
provable. By definition of schema satisfaction, this is not a legal query. Similarly, the following counter-
example to exhaustivity -;T \-even Va; : nat.even(x) is not allowed. Moreover, the Context Preservation
Theorems (Theorem 6.13 and 6.14) guarantees that, from allowed run-time contexts and goals, only allowed
subgoals are generated.

We use T;V \-v NotG(G) for V h NotG(G) = G' and T;V \-v G; also, T;V Vv NotD(!>)»-<) for
Notü(.D) = D' and T; V \--p D'y>->Q; similarly for Nota. We use V to denote the conjunction of a positive
program V+ and its negation V = Noto('P+).

Theorem 6.32 (Exclusivity) Let (=5. augD(P) and T;V < Sa. For every goals such that 1?;2>\G < Sa,
It is not the case that there is S+ :: T;Vh-p G and there is S~ :: T;V \--p NotG(G).

Proof: We generalize this to:

2.1 Let D C def (q, V): It is not the case that 1+ :: T; V \-v D»Q and I" :: T; V \-p NotD(£>)»NotG(Q).
By mutual induction on the structure of I+ and S+, by assuming their existence:

6.7. EXCLUSIVITY 125

Case:

Case:

I+ =
T;V\-r±q»Q

But there can be no proof of ->Q from Noto(J-g) = T,.

»1

1+ =
r-V\-v[a]Nn = Mn T;V\-V [o]G

» ->
T\V\-vV{qNn<r-G)»qMn

and 1- ends in T; V Vv NotD(V(g Wn <- G))»->g M„:

■\-Mne \\Nn\\ (*) By
51

+::r;2?l-7>[CT]G? _
r;P \-v As^e-HNot^) V(-9 5" <- T) A V(-.g Nn <- NotG(G))»-H7 Mn

Subcase: T\V Vv A^e-HNotfArT) ^C-1? ^n <- T)»-.gJtfn

T;X> hp V(->g 3£j- T)»-.g ~M^ for some S^
T;P hp [0](-.<7 SJ <- T»-.g M^ for some 6

T-Vhv[6]S~n=Wn

• h Mn G ||Not(Wn)||
A. By term

Subcase: T;V \-v V(->q 7\£ «- NotG(G))»-g Wn

r;2?hPNotG([a]G)
±

By sub-derivation
definition of of ||.||

By sub-derivation
By rule NotD ->

By inversion
By inversion
By inversion
By inversion

By definition of ||.||
exclusivity with (*)

By inversion
By inversion

By IH 1 w.r.t. S+

Case:

I+ =
T;V\-V A»Q T;V\-pD2»Q

r;V\-p(DiVD2)y>Q

and I" ends in r;£> \-v NotD(£>i V D2)»-nQ:

T;V\-V Di»Q
T;Vh-p D2»Q
r;PhpNotD(Di)ANotD(r)

2)»-1Q

Subcase: T;V \-v NotD(Di)»-.Q
1

Subcase: T;V \-p NotD(D2)»iQ
_L

»V

By sub-derivation
By sub-derivation

By rule NotDV

By inversion
By IH 2.1

By inversion
By IH 2.1

Case:

1+=.
T-V\-VD1»Q

T;V \-v (Di A D2)»Q

and I" ends in T;V\-V NotD(Z?i A D2)»^Q:

r;V\-vD!»Q
T;V\-p NotD(Z?i) V NotD(D2)»-iQ
T;V \-v NotuiDi)
JL

»A

By sub-derivation
By rule NotpA

By inversion
By IH 2.1

Case:

J+ =
T;V\-pD2»Q

T]V\-p (Z?i AD2)»Q

and I" ends in T;P hP NotD(Di A D2)»^Q:

»A

6.7. EXCLUSIVITY 126

T;V hp £)2»Q By inversion
T; P \-p NotD(£>i) V NotD(£>2)»-'Q By rule NotDA
T; V \-v NotD(£>2)»-<? By inversion
± By IH 2.1

2.2 I Let £> C def(g,P) and £>' C def (<?,£>). It is not the case that 1+ :: T;D hp D»Q and X- :: r;Z> Vv

NotQ(Z?')^»>-iQ. By simultaneous induction on the structure of 1+ and I~:

No case for 1+ ends in »T

Case:
2+ = »At

r;Dhpl,»0

By schema satisfaction there can be no formula in the dynamic definition of q.

T;V^v[a)S^=M^ T;V\-v[o]G
1+ = — == » ->

T;V bv \/(q Sn i-G)»q Mn

and 1- ends in T;V \-v Nota(V(g % «- H))»-iq ~Wn.

T; V \--p [a]Sn = Mn By sub-derivation
T; V \--p [a]Si = Mj for every 1 <i <n (*) By sub-derivation

T-V Vv (Axedom(r)
r h N<(<7 ^ A (Ai^n^Not^ ^)PVH ^) <- NotG ((?)»-■? A4

By rule NotQ -*•

Subcase: T; V \-v T h Not£(g 3^)»-.g M^ By inversion
T; X> hp Ai<i<« VZi: Ai. ... VZn: A„. -.g [ex/Zj]Zn»->q M^ By inversion
T; P hp d = Mj By inversion
-L From line (*) and Sj rigid

Subcase: T; V \--p Ai<i<n,xR'g NotJ.(g T„)»-ig M„ for a fixed x By inversion
T;V\-p Notfjq %)»->q M^ By inversion
r;Z>N> Ai^xnAjverhNot^)^!^!- ...VZn:^„.-.g [ex/ZhN/Zj]X)»^qM;

By rule Notj. ->■
T; T>\--p ex — Mi By inversion
-L From line (*) and Si rigid

Subcase: T; V \-v W(->q %. <- NotG(H))»-<q ~M^ By inversion
T;T> \--p [6]Tn = Mn By inversion
T; V \-p ex = Mj for some 1 < j < n By complementable clause
-L From line (*) and Sj rigid

Case: 2+ ends in » -¥, 1~ ends in »J_: there can be no proof of ->Q from T I- Nota(.lg) = T9.

Case: I+ ends in >>> —>, I- ends in »T:

Subcase: T = ■ or for all x £ dom(r), for all i, 1 < i < n it is not the case that Z-R'g: then
T h Nota(T?) = T? and an be no proof of -^Q from T9.

Subcase: else T h Nota(T,) = Axe<tom(r)(Ai<i<n,*Ä««r h Not^(T,)); fix x,i:

r;DhPri-Not^(Tg)»-.g A4 By inversion
T;V\-p Ai<i<nVZi:A!. ...VZn:An.-<q [ex/Zj]Zn»-^qM^ By inversion

T; D l-p e^ = Mj By inversion
± Above line and rigidity restriction on Sj (*).

Case:
, T;VhvDx»Q T;V\-VD2»Q

1+ = »V
T;V\-V (Dj VD2)»Q

and I" ends in T; V V NotaCD')»-^:

6.7. EXCLUSIVITY 127

r;ph?D1»Q By sub-derivation
By IH 2.2

Case:

J+ =
T;V\-V Dx»Q

»A,
T;V\-V {Di AD2)»Q

and I' ends in T;V h NotQ(D')»-nQ:

r;PhPD1»Q
1

By sub-derivation
By IH 2.2

Case:

I4
r;PhpD2»(?

»A2

r;phP (/?! AD2)»<5

and X~ ends in f;P h Nota(D')»-i(2: Symmetric to the above.

Case:

1- =•
r^hpNota^i)»^

»Ai
T;Php Nota(I>i V ££)»-.<?

and I" ends in T; V h D»Q. By IH 2.2

Case:

1" =
r;Z>h7,Nota(£>;>)»-<3

»A2

Case:

T; V \-v Nota(I>i V D'2)»-^Q

and J- ends in T;V h D»Q. By IH 2.2.

T;V\-V Nota(D;)»-.Q T;PI-p NotQ(P2)»-Q
J" =

T;PI-p NotQ(Di AP2)»-Q

and I- ends in T;V \- D»Q. By IH 2.2.

»V

2J5J Let D C def(g,P) and P' C def(g,P). It is not the case that 1+ :: T\V hP P»Q and I" ::•
T;P h-p NotD(P')»_,Q- By simultaneous induction on the structure of 1+ and I-. Note that by the
restriction to complementable programs, some SPE ex occurs in D; we thus use the notation N^.

No case for for I+ ends in »T.

No case for for 1+ ends in »L, since by the restriction to complementable clauses, X cannot
occur as an assumption.

Case:

I+ =
F-V hv [a}N'ex = Mn T;V\-V [a]H

» ->
T-VVvV{qNl <-H)»qMn

and 1' ends in T;V\-V NotD(V(<? 5^" <- G))»-.g MÜ.

r;ph7,[fr]iv^ = M;
T; P hp ex = M, (*) for some 1 < i < n
T; V \rv A^e..-Not(^) V(-9 ^ <- T) A V(-9 S^ <- NotG(G))»-i« M~n

Subcase: T; V Vv A^ej-Not^) v(_,9_^ <~ T)»g^ _
T; P hp V(-^ %_*- T)»q Mn for some Tn € • h Not(5n)
T;P hP [6>](->g Tn +- T)»-ig M„ for some 6»
r;Pr-P[ö]i; = M;

1

By sub-derivation
By sub-derivation

By rule Noto ->

By inversion
By inversion
By inversion
By inversion
By inversion

(*)

6.7. EXCLUSIVITY 128

Subcase: T; V hv V(-i? SZ «- NotG(G))»->g ~MZ By inversion
T; V \-p [6']S^ = MÜ By inversion
T; 2) hp [9']Si = Mi By inversion
_L From line (*) and Si rigid.

No case for 1+ ends in » ->, I" ends in »_L: if T9 is the only definition for <?, then by schema
satisfaction V(g iV^ <- if) could not be an assumption.

No case for 1+ ends in » -», J~ ends in »±: ditto.

Case: „ „ ^
r;i>hpZ)1»Q

1+ = »Ai
T;V\-p (UiAD2)»Q

and I- ends in T;2? h NotD(£>')»^Q:

T; P h-p J9i »Q By sub-derivation
1 By IH 2.2

Case: „ ^
T;VhvD2»Q

1+ = »A2
T;V\-V (Di A£>2)»Q

and I- ends in T;X> I- NotnC-D')»-1^ Symmetric to the above.

Case:
r;X>KpNotD(£>i)>>-<>

j- = »Ai
T;V\-p NotD(£>i V Z)2)»-Q

and I~ ends in T;V \- D»Q. By IH 2.3

Case:
T;T>h-pNotD{D2)»^Q

Z~ = »A2
T;V \-v NotD(£>i V £>2)»-Q

and 1~ ends in Y;V h £>»<9. By IH 2.3.

T;V \-v NotD(£>i)»-Q T;V \-v NotD(£>2)»-nQ
j- = »V

T; V \-v NotD(I>i A D'2)»^Q

and I- ends in T;V h £>»<?. By IH 2.3.

2.41 Let D C def(g,X>) and D' C def(<7,P). There are two main cases, according to whether D and £>'
belong to the same block (and in this case it suffices to consider D = D') or not:

1. It is not the case that 1+ :: T;V \-v Dy>Q and 1~ :: T;V \-v Nota(D)»-,Q. By mutual
induction on the structure of I+ and S+.

Case:
r;V \-v [a]Nn = Mn T;V \-v [a]G

1+ = = == » ->
T;V\-v\/{qNn^G)»qMn

and I" ends in r;P hp Nota(V(g JV^ <- G))»-.g ~M~n.

S^ :■■ T;V \-p [a]G By sub-derivation
T;V\-p [a]~Nn = M« By sub-derivation

r;P Vv (Asedom(r) r h Not^ ÄQ A (Ai<i<„,,*, N<(« ÄQ)) A V(-.g ÄQ «- NotG(G)»-><7 ^n
By rule NotQ ->

V; P \-p [a]Ni = M» (+) for all 1 < i < n By inversion
r h Mi G iJiVill (*) for all 1 < i < n By inversion

6.7. EXCLUSIVITY 129

Subcase: [a]Ni ^ ex, {a]Ni rigid:
r; V Vv T I- Not£(g 7^)»->q M~n _ By inversion
T\V \-v Ai<i<„v^i:^i- ■ ■■VZn:An.-'q [ex/Zj]Zn»-<q Mn By inversion
T; P h-p ex = Mj By inversion
-L Above line and (+).

Subcase: [a]Ni = ex:

T-V Y-v (Ai^^fl.-, NotiO? ÄQ))»[ffW A4 By inversion
r;Php Notx(iVn)»-.g Mn By inversion
T;2? hp Ai<i<„ Awen-Not(Mi) V(~"? [ex/ZuN/Z^Zn <- T)»-ig M„ By inversion
T; 2? r-p A/ven-Not(M,) ^("^ [^x/Zi,N/Zj]Zn <- T)»-.g Mn By inversion
T; PhpMj = [6]N By inversion
r h Mi e \\N\\ for some N &T\- Not(JVj) By definition of ||_||
± By term exclusivity (4.21) with line (*)

Subcase: T; V \-p -N{q Wn 4- NotG(G))»-ig A4 By inversion
T; V Vv NotG([a]G) By inversion
-L By IH 1 on 5+

Case: I+ ends in »V, »A, »V: by IH 2.4.1 similarly to case 2.1 with NotQ in place of Noto-

2. It is not the case that I+ :: Y;V Vv Dy>Q and 1~ :: T;T> \-v NotQ(Z?')»_,<5- BY simultaneous
induction on the structure of I+ and I~:

No case for I+ ends in »T.
No case for 1+ ends in »-!, by restriction to complementable clauses and schema satisfac-
tion.
No case for I+ ends in » ->, J~ ends in »J_, as above.

Case:
T;V Vv [a]N? =Mn T-V Vv [a]G

1+ = — — = » -»
T;V \-p V(q N? <-G)»q M„

and 1~ ends in T;V \-p NotQ(V(g 5^ <- G'))»^<7 A4, from a different block.
£+ :: T;V \-p [a)G By sub-derivation
T; V \-v [a]Nf = M~^_ _ By sub-derivation

r;D \-v (Axedom(r)
r h Not?(<? 50 A (Ai<i<„,*fli, N<4(g ^)))AV(^ _Q f- NotG (<?')»-? A4

By rule NotQ -», y ?_ x
T; V \-v [a]Ni = Mt (+) for all 1 < i < n By inversion

Subcase: [a]Ni ^ ey, [<r]Ni rigid:
T;V\-pT\- Not£(g 3Q»-ig A4 By inversion
r;X>r-p Ai<t<nv-^i:^i- ...VZn:An.-ng [ex/Zj-]Z^»-.g Wn By inversion
T; D hp ex = Mj By inversion
-L Above line, Nj rigid and (+).

Subcase: [a]Ni = ey:
_L Above line, eigenvariable condition and (+).

Subcase: T; V \-v -N{q S^ <- NotoCG'))»--? A4 By inversion
T\V \—p [a]Sn = Mn By inversion
± Above line, eigenvariable condition and (+).

T;V\-v[a]K = M^ T;V\-v[a]G
2+ = __ _____ » _>

T\V\-vV{q Nn ^ G)»q Mn

and 2~ ends in T;V h-p NotQ(T,))»-i</ M„, from a different block.

6.7. EXCLUSIVITY 130

<S+ ::T;V\-V [a)G By sub-derivation
T;VhP[a}N^ = M^ By sub-derivation

^v N> Asedom(r)(A1<i<„,xÄ',r I" Not£(T,)»^ M„
By rule NotaT

T; V \-v [a]Ni = Mi (+) for all 1< i < n By inversion
r h Mi e iWiH (*) for all 1 < t < n By inversion
[a]Ni ^ ex, [tr]JVj rigid

♦ T;X> hp T h Not£(? Nn)»-iq Mn By inversion
T;V\-V A^KnVZirAi. ...VZn:An.^q[ex/Zj]Z^»^qJfa By inversion

T;V\-pex =Mj By inversion
V ±

Case:
r;DhPDi»Q

I+ = »Ai
r;2>h> (£>i A£>2)»Q

and I" ends in T;P h Nota^D')»-1«?:

Above line and (+).

r;PhpDi»Q By sub-derivation
_L By IH 2.4.2

Case: 1+ ends in »Ai,»V, 1~ ends in »Aj,»V: analogously by IH 2.4.2.

11] By induction on the structure of S+.

Case:
T;V\-pdef(q,VAV)»Q

S+ = 1- atm
T;V\-VQ

and S~ ends in T;T> r-p NotG(<3):

T;V\-V def(q,T A V)»Q By sub-derivation
T;V\-p^Q By rule NotGAt
T; V \-v def (pq, V A V)» ^Q By inversion

Subcase: T; V Vv NotD(def(g, V)) By definition
± By IH 2.i, i E {1,3} according to D static or dynamic

Subcase: T;T> Vv NotQ(def(g,I>)) By definition
-L By IH 2.i, i 6 {2,4} according to D static or dynamic

Case:
riDhpGi r;PhpG2

S+ = h A
T;V\-PG1AG2

and <S_ ends in T; V \-p NotG(Gi A G2)

• T;V\-vGi By sub-derivation
T;V\-VG2 By sub-derivation
T-V \-v NotG(Gi) V NotG(G2) By rule NotGA

Subcase: V;V\-V NotG(Gi) By inversion
_L BylHl

Subcase: T;V\-p NotG(G2) By inversion
_L BylHl

Case:
rjPh^c?! 5+ = |_ v

r;PhPGiVG2

and S~ ends in r;X> bp NotG(Gi V G2)

6.7. EXCLUSIVITY 131

r;phpGi
T;V \-v NotG(C?i) A NotG(G2)
T;Vl-pNotG(Gi)
_L

By sub-derivation
By rule NotGV

By inversion
By IH 1

r; v vv G2
I-V

T;V\-pGi VG2

and S~ ends in T;V \-v NotG(Gi VG2). Symmetrical.

{r,y:A);V\-p[y/x]G'
S+ = hV*

T;V\-vVx:a.G'

and S~ ends in T;V \-v NotG(Vz:a.G"):

(r,y:A);V\-p[y/x]G'
(r,y:A);V^vNotG([y/x]G')
1

By sub-derivation
By rule NotGV

BylHl

Case:

£+=•
T;(V/\D')\-VG'

T;T>\-p D' ->G'
h -*

and 5- ends in T;V Vv NotG(L>' -► G'):

T; (2? A £>') hp G'
r;PhpD'->NotG(G')
r;(DAD')hPNotG(G')
1

By sub-derivation
By rule Note ->

By inversion
By IH 1

Case: The (dis)equality case follows from the decidability of the (dis)equality judgment.

D

Note that the proof goes through as there is no 'bad' interaction between the static and dynamic definition
of a predicate; namely in sub-case 2.2 there is no overlap between a clause from def(q,,7?) and def(->g,P)
since in every atomic assumption there must be an occurrence of a new parameter and every term at the
same position in a program clause head must be rigid. Symmetrically for 2.3. Sub-case 2.4 holds analogously
to the first case 2.1, which is based on term exclusivity (Corollary 4.21). In the latter case, it suffices to
consider, for D C def(g,^), only T;D \-v £>»Q and T;V \-v NotD(D)»->Q, because the positive definition
is a conjunction, while the negative one is a disjunction; 2.4 needs to discriminate whether the two dynamic
assumptions belong to the same block: if so the same remark applies. If not, the (pivot) eigenvariable
condition ensures non-overlapping.

The condition for programs to require clause heads with rigid terms may seem too restrictive; the natural
way to relax it, requiring that only one of those terms which occur in the same position of a parameter in
each assumption needs to be rigid, turns out to be inconsistent; in fact, the property needs to be preserved
in the negative program as well. Consider the following counterexample:

plam : p (lam E) (lam F) «— Vxiexp.p (E x) (F x).

papp : p (app E\ E2) F.

Augmentation will insert the clause V(->p x H f\->p H' x), which now overlaps with ->papp. As a result both
p (lam(Xx:exp.app x x)) (lam(Xy.exp.y)) and its negation are provable.

As we remarked earlier, the rigidity condition applies only to predicate definitions which are mutually
recursive to non-Horn ones. Thus, any such program which uses a 'catch-all' clause is those positions
is forbidden; nevertheless it is easy to avoid catch-all clauses via explicit coercion or (sometimes) partial
evaluation. Finally, we remark that any other (decidable) condition which avoids overlap between static and
dynamic clauses will do; the one we have proposed is statically checkable, certainly not 'ad hoc' and has
been dictated by the practice of logical frameworks.

6.8. EXHAUSTIVITY 132

6.8 Exhaustivity

Theorem 6.33 (Exhaustivity) Let \=Sa augD{V) and Y;V <Sa. For every goal G such that Y; V\G < Sa,
if Y;V\/VG then Y;V Vv NotG(G).

Proof: Note that Y;V \--p def(-i<7,V A D)»-^ iff so does every disjunct. We generalize this to:

1. If S- :: Y;V\/V G, then S+ :: Y;V Vv NotG(G).

2.1 If DCdef(Q,P)I- ::Y-V\/VD»Q, then 1+ :: Y;V \-v NotD(r>)»-Q.

2.2 IfDCdef(Q,2?)I- :: Y;V \/v D»Q, then 1+ :: Y;V \-v Nota(£>)»-<?.

The proof is by mutual induction on the structure of S~ and I~. We start with part 2.1:

2.1

Case:
I~ =■

Y;V\fvT»Q
»T

Then NotD(T) = _L and
2+

r;Php±»^Q
»1

Case:
for all 6Y;V\/V [6}Nn - Mn

2~ = — = >> -*1

r;V\/vV{qNn<-G)»qMn

for all 6Y;V\/v [0pVJT = ~M~n
for aU0 [0]Ä^ # Wn

■^Mnt\\Nn__
J^Mn eJ|Not(JV„)|| _ _
M„ = [cr]5„ for some a and 5n € • h Not(JVn)

r; X> hP V(-.g 5„ «- T)»-.g Mn

r;X> N> As^e.hNot(iv7) VH 5" <- "0»-.g ^n

By sub-derivation
By rule \/=

By definition of ||_||
By term exhaustivity (4.21)

By definition of ||_||
By rule h=
By rule »V

By appropriate applications of rule »A

r;^ ^v As^e.hNot(^) v(-9 sn <-J2A V("9 Mn *" NotG(G))»-g M„
T;P hp NotD(V(<z Nn «- G)»-.? M„)

By rule »Ai
By rule NotD»

Case:

T~ =
r;P^[q]JV„^Mra r;P^[g]G

Y;V\fvV{qN^ <- G)»qM^
>>->2

r;DFP[(7]JV„ = Mfl

r;P^[<7]G
r;Pr-pNotG[CT](G)
T; 2? Hp V(--g iV„ <- NotG(G)>>-.g Mn
r;P 1-7» As^e-hNot^) V(-? S« <- T)_A VH? JV„ <- NotG(G))»-.g Mn

Y;V Vv NotD(V(g Nn <- G))»-.g M„

By sub-derivation
By rule h^

By sub-derivation
BylHl

By rule » ->•
By rule »A2

By rule Notp ->

Case:

X- =■
T;V\/vDi»Q

T;V\/v (r>iVD2)»Q
>>Vi

6.8. EXHAUSTIVITY 133

T;V\/vDi»Q
T;V\-V NotD(-Di)»-<>
T;V\-p NotD(i?i) A NotD(D2)»-Q
T; V \-T NotD(-Di V D2)»~iQ

Case:

1- =■
T;V\/PD2»Q

T;V\/v(DiVD2)»Q
A>V2

Symmetrical to the above.

Case:

r = T;V\/vDxy>Q T-V\fvD2»Q

T;V\/v {D1AD2)»Q
/»A

T;V\/vDl»Q
T-V\fvD2»Q
r;DhpNotD (£>!)»-<)
r;PhpNotD(Ö2)»--Q
T;V\-V NotD(jDi) VNotD^)»--«?
T;V Vv NotD(J5i A D2)»-^Q

2.2 | Recall that q M*x stands for q Mi ... M,-_i ex Mi+1 ...M„, for x:A G T:

Case:
J- = — »T

T;V\/V Tq»q Mi

T; V hv [Ml /Zn]Zn = Ml
r; V \-v VZi: Ai. ... VZn: An^ [ex/Zi]ZnZn»-^q Ml
T;V\-V T h Notf (T,)»-.g M^
r;2?l"7> Al6dom(r) Ai^^^fl^NotKT,)»^ MJ,
r;2? hp NotQ(T,)»-.g M^

By sub-derivation
By IH 2.1

By rule »Ai
By rule NotDV

By sub-derivation
By sub-derivation

By IH 2.1
By IH 2.1

By rule »V
By rule NotßA

By rule h=
By rule »V

By rule T h Not^
By appropriate applications of rule »A

By rule NotQT

Case:
x:a G T, for all 6 T; V \fv Nn = Ml

Y;V\/vV{qNn^G)»qMi
f»

for all 6 T; V \fv [6]Nn = q M'Ct and x:a G T By sub-derivation

Subcase: ex ^ [6]Ni, Nt rigid by definition for some 1 < i < n:

T-Vhv\Mll~Z~n]Z-n = Ml
T;Vhv VZi-.Ai. . ..VZn:An.->q [ex/Zi]Zn»^q M^

By rule h=
By rule »V

r;Dhp(A1<i<nVZ1:yl1. ...VZn:An.^q[ex/Zi]Zn)»^q M*x

By appropriate applications of rule »A
r; V \-v r h Not% ~Nn)»^q ~Ml_ By rule T V- Not£

r; v ^ (Ax&dom{r) r i- No£fa Wn) A (A^^,,* , r i- No4(9 M^))) A V(^ Wn) <- G'»-^ M«.
By appropriate applications of rule »A

By rule Nota -»

By rule \/=
By definition of ||_||

By term exhaustivity (4.21)
By definition of ||_||

By rule h=

T; V \-P Nota(V(g Nn <- G))»^q M'tx

Subcase: ex = [0]Ni,Mj ^ [9]Nj for 1 < i,j < n,i ^ i:

for all 6 [e)Nj ± Mj
T h Mj $ \\Nj\\
r I- AT,- € ||Not(ATj)||
Mj = [a]N for some a and N € T h Not (AT,-)
T; 2? hp Mj- = [<r]JV

6.8. EXHAUSTIVITY 134

T; P \-p V(-.g [ex/Zu N/Zj]Z^ <- T)»^qWj~ By rule » ->■
T;V \-v AiverhNottM,) V(-9 [ex/Zi,N/Zj]Zn +- T)»-g Mj.

By appropriate applications of rule »A

r; 2? ^P Ai<3-<„ Ajv€rhNot(Mi)
v(^9 [e A^V^R <- T)»--? Mfx

By appropriate applications of rule »A
T; P V-v No4 (Mn)»->q ~Mi_ By rule Not j.

r;x> I-T> (Ai<i<„,IÄ«, NotiösQ»-^ M*.
By appropriate applications of rule »A

r;2? ^ (A,edom(r) r h Not? fa Ä£) A (A^K«,**, N<<(g JÜft))»-i9 M^
By appropriate applications of rule »A

T; 2? 1-7» (A*edoro(r) r I- Notffa Wn) A (Ax^,^, Not^fa Ä£))) A V(-g M^ +- G')»-9 M^
By rule »A2

T; P h-p NotQ(V(g N^ <- G))»-.g M^" By rule NotQ -►

Case:
Y;V\/v[a]Nn^Ml T;V\/v[a]G

1- = = = >>^2
T;V\/vV(qNn<-G)»qMim

T;V\fv [a]Nn £ M\x By sub-derivation
T; P \-v [a]7fc = M? By rule h^
Y\V\fv [u]G By sub-derivation
r;PhpNotGM(G) BylHl
T;P hp V(-ng iV^ «- NotG(G))»-.<? M^ By rule » ->
r;2> hp (A,edom(r) r h Noi£(g Ä£) A (/W* ,,#, Not'fa 3£))) A V(^g M^) <- G'»^ MI

By rule »A2
r;D \-v Nota(V(g 7V„ «- G))»^g M^ By rule NotQ ->

Case:
T;V\/VD!»Q

1- = »Vi
Y;V\/V (Dl\/D2)»Q

17; P \fv D\~^>Q By sub-derivation
T;V\-p Nota(-Di)»-iQ By IH 2.2
T; P \-v Nota(Di) A Nota^)»-^ By rule »Ai
T; P hp Nota(£>i V D2)»-.Q By rule NotaV

Case:
T;V\/VD2»Q

1- = >>V2
T;V\/V (D1\ZD2)»Q

Symmetrical to the above

Case:
T; P \fv Pi»Q T; V \/v D2»Q

1" = /»A
Y;V\/V (D1AD2)»Q

T;P \/p D\^>Q By sub-derivation
T; P \fv D2y>Q By sub-derivation
T; P \-v NotQ(Pi)»-<> By IH 2.2
T; P hp Nota(P2)»-<? By IH 2.2
r;P Vv Nota(Pi) V Nota(P2)»-'<3 By rule »V
T; V \-v Nota(Pi A D2)»->Q By rule NotDA

0

6.8. EXHAUSTIVITY 135

Case:

S~ =
T;V\fv M{Q,V AV)»Q

Subcase: D Cdei{Q,V)

T;V\/VD»Q
T;V \-v NotD{D)»^Q
T;V \-v dei(^Q,V)»-^Q
T;V h> NotG{Q)

Subcase: D Qdef{Q,V)

T;V[/VD»Q
T;V \-v Nota{D)»->Q
r;V\-rdef{-iQ,V)»->Q
r;Ph>NotG(Q)

T;V\/VQ
l/atm

By sub-derivation
By IH 2.1

By repeated applications of rule »V
By rule h At

By sub-derivation
By IH 2.2

By repeated applications of »V
By rule h At

Case:

Then NotG(-L) = T = T and

Case:

S~ =

s~ =
r y±
\V\fvL

<?+ - 1 T

T\V hPNotG(T)

r;p|/pGi T;V\fvG2

T-V\/V{G1VG2)
yv

T;VyvGx

r;vyvG2
r;DhPNotG(Gi)
T;V \-v NotG(G2)
r; V \-v NotG (Gi) A NotG (G2)
r;X>hpNotG(Gi VG2)

Case:
T;VyvG1

Y-V\/V{G,/\G2)
¥*1

Case:

T;V\/VGX

r;2?hpNotG(Gi)
r;P Vv NotG (GO V NotG(G2)
r;DI-pNotG(Gi AG2)

Symmetrical to the above.

T;VyvG2

r;p^(G!AG2)
¥A2

Case:
T;VAD'\/PG'

s~ = ¥ ->
r; v yv D' ->• G'

T;VAD'\/pG'
T;V A D'h> HotG{G')
r;PhpD'-j>NotG(G')
r;X>H-pNotG(£)'-*G')

By sub-derivation
By sub-derivation

BylH 1
BylH 1

By rule h- A
By rule NotGA

By sub-derivation
By IH1

By rule h V
By rule NotGV

By sub-derivation
BylHl

By rule h->
By rule NotG ->

6.9. REFINEMENTS 136

(T,y:a);VVv[y/x]G'

T;V\/v\/x:a.G'
W

Case:

(r,y:a);V\/v\y/x]G'
(T,y:ay,V\-v[y/x}NotG(G')
{T,y:a);V \-v\/x:a.NotG{G')
T;VhvNotG(\fx:a.G')

Case: (dis)equations: immediate.

Corollary 6.34 Clause complementation satisfies the boolean rules of negation.

By sub-derivation
BylH 1

By rule h V
By rule NotGV

D

6.9 Refinements

In the following sections we will move towards an operational semantics for our language.

6.9.1 More on Termination

We prove that clause complementation preserve termination, so that a negative program can be used as a
decision procedure if so is its positive counterpart. First some preliminaries: define Not(i?) as follows:

Not(-) = •

Not(Ä,Gi -< G2) = Not(Ä),NotQ(Gi) < NotG(G2)

Observe that, by the restriction to clauses of the form V(Q «- G), it is sufficient to consider only well-ordering
on goals. It is clear that negation is preserved under relation union, that is:

Not(R1,R2) = Not(Äi),Not(fi2)

We will also need the following technical Lemma, stating that goal complementation commutes with substi-
tution:

Lemma 6.35 Let T h 6 : $. T h* NotG ([6]G) = V h$ [0]NotG(G).

Proof: By a simple induction on the structure of the derivation of T h$ NotG(G).

Lemma 6.36 If [R] is well-founded, so is [Not(i?)].

D

Proof: Suppose [Not(i?]) is not well-founded. Then there is an infinite descending chain ... -< [9}Gi -<...-<
[0}G2 ■< [0]Gi. By definition of Not(iJ) there is G\ such that NotG(GJ) = Gt and that G\ -< G^ € R for
some i € u. Since by Lemma 6.35 NotG([#]Gj) = [#]NotG(Gi), then [R] allows an infinite descending chain
... -< [0\G'i -<...-< [6]G'2 -< [0]G'j, impossible. □

The final piece is to show that the relation induced by the complement of a program is the complement
of the relation induced by the program itself.

Lemma 6.37

1. Ifvv.ThD^R then NotD(I?) =^> Not(Ä).

2. Ifa-.-.VrD^R then T h Nota(£>) =^> Not(JJ).

3. If~(::T\-G=^RthenTY- NotG(G) =^> Not(Ä).

Proof: By induction on the structure of the given derivations. We prove some selected cases:

6.9. REFINEMENTS 137

D, AT , /_.. , D
Case: TT :: T =^> ■; NotD(T) = 1 =^> ■ = Not(-)-

Case: 7r ends in M(q Mn <- G) =^> R, [p]G -< [p]q Mn, for a global substitution p:

G ,
• h [p]G => .R By sub-derivation
• h Noto_([p]G) =^> Not(U) By IH 2
V(-.g Mn <- NotG(G)) =^> Not(Ä), Not(G) -< -iq ~Wn By rule =£>->

Aiv^eNot(M^) V(~'? ^n) ==> • By rule =^> A

AT^eNot(M^) V(^9 ^n) A V(-g il^j- NotG(G)) =^> Not(Ä), Not(G) ^,^ By rule ^ A

A]v:GNot(Ä^) VH? JVn))AV(n? Mn <- NotG(G)) =^> Not(i?),Not(G) -< NotG(g M^)By rule NotGAt

NotD(V(g Ufa <-G)) =2* Not(Ä, G<->qMJ By def. of Not(fl)

G. AT , /^1\ /-I D. Case: 7 :: Q =^- •; NotD(G) = -nQ ==> • = Not(-

G
Case: 7 ends in T h d A G2 =^>i?i,fi2,Gi -< Gi AG2,G2 -<GI AG2:

T h GI =4- i?i and r f- G2 ==> i?2 By sub-derivation

r H Noto(Gi) =^> Not(ßi) and T h NotG(G2) =^ NotG(Ä2) By IH 2
T I- Not(Gi) V NotG(G2) =£*• Not(Äi),Not(Ä2),

NotG (Gi) ^ NotG (Gi) V NotG (G2), NotG (G2) -< NotG (Gj) V NotG (G2) By rule
n-Not(G! AG2)^>Not(i?i),Not(i?2),

NotG(GO -< NotG(Gi AG2),NotG(G2) -< Not(Gi AG2) By rule
rhNot(Gi AG2)=%Not(i?!,fi2,Gi <GX AG2,G2 < d A G2) By union and def. of Not(R)

a

Corollary 6.38 IfV is terminating, so is NotnC'P).

Proof: By definition, V I if V =^> R and [R] is well-founded: by Lemma 6.37 NotD(7>) =^> Not(fi) and by
Lemma 6.36 [Not(fi)] is well-founded. Thus NotDCP) I . D

6.9.2 Elimination of V

We now show how to eliminate the V operator preserving provability; this will recover uniformity in proof-
search. We generalize the approach in [BMPT90], where the operation was defined as follows: for mi : <3i «-
Gi and m2 : Q2 «- G2:

miVm2 = 6{Qi <- G\ A G2) where # = TO<?M(<3I,Q~2)

As we remarked earlier, the V operator was introduced to preserve the duality under negation between
conjunction and disjunction in clauses. Its use, as a clause constructor, is limited to clauses in the same
predicate definition and therefore it can be eliminated simulating unification in the definition. Yet, the strict
higher-order unification problem is quite complex and potentially even more so complicated by the mixed
quantifier structure of HHF, though this is not the case for our language, which does not have existentials.
Moreover, we have already in our language variable-variable (dis)equations stemming from left-linearization
and normalization of input variables. Finally, we have defined unification of simple terms in Section 4.3 as
an intersection operation. This has greatly simplified the presentation, but does not immediately give us a
notion of most general unifiers seen as sets of substitutions. We thus choose to compile our source into an
intermediate language which makes unification problems explicit as simple equational problems in the style
of the unification logic introduced in [Pfe91a]. We can perform unification as constraint simplification as
used in Elf [Pfe89] and Twelf [SP98] in a later stage that we do not describe here.

We adapt the residuation technique used in [Pfe92] to compile immediate implication into resolution. We
define the judgment D\ V D2 \ D in Figure 6.14 by simultaneous induction on D\ and D2, with the intended
meaning of lD\ V D2 compiles to D\

6.9. REFINEMENTS 138

■VTD VDT
TVD\T DVT\T

■V±D vzu
±VD\D DV1\D

 vAtAt
V(g Ni*-Gi)V \f(q N2 <- G2) \ V(g JVi <- {Ni = 7V2) A Gi A G2)

 VAtAt ^
V(g JVi <- GO V V(g' N2 <- G2) \ T

D!VD2\D D[vD2\D' D1VD2\D D[\/D2\D'
 VVL VAI

(D1VD'1)VD2\DvD' (Z)IAD;)VD2\OAD'

D1VD2\D D[VD2\D' D1VD2\D D'1VD2\D'
 VVi? VAJR

D2y{D1yD'l)\D\JDl D2V(D1AD'1)\DAD'

Figure 6.14: V-Elimination: £>i V £>2 \ D

Example 6.39 Continuing Example 6.25, recall that:

Noto (c/oz) =

\/F:exp. -'dosed (lam F) A (VFi,F2:exp. -'dosed (app i<\ F2)).

Notp (clolam) =

-^closed z A \/Fi,F2 :exp. -'dosed (app Fj F2) A

VE:exp. -idosed (lam E) «— \/x:exp. (dosed x -¥ ^closed (E x)).

Removing trivially unsatisfiable dauses, the computation ofNotTo(cloz) V Noto(clolam) \D results in:

VE:exp. -\closed (lam E) «— (\/x:exp. dosed x —> -'dosed (E x)) A
VFi, F2: exp. -^closed (app Fi F2).

Going back to the linx example:

Not£,(linxx) V NotD(Hnxapl) =

(-<linx(Xx. app (E\ x) (E2 x)) A -ilinx(Xx. lam(\y. (E x y)))) V

(-'linx(Xx. x) A -ilinx(Ax. lam(Xy. (E x y))) A -ilinx(\x. app (E\ x) (E2 x1))

A -'linx(Xx.app (Ei x) (E2 x0)) <- -*linx(Xx.Ei x))

Notx)(linxx) V Notv(linxapl) \ D, where

D =

-'linx(Xx.app (E\ x) (E2 x1)) A

-'linx(Xx.app (E\ x) (E2 x0)) *- -'linx(Xx .Ei x) A

-'linx(Xx. lam(Xy .Exy)).

The following lemma guarantees that compilation preserves run-time immediate entailment:

Lemma 6.40 Let Dx V D2 \ D: for every ground substitution V h 0 : $, T;V h [0](.£>i V £>2)»<5 iff
T;V\-[8]D»Q.

6.9. REFINEMENTS 139

Proof: (->). By induction on the structure of TT :: Pi V P2 \ D.

Case: IT ends in VTP,vAtAt ^: trivially true.

Case: 7r ends in V±P, VAt_L: immediate.

Case:
7T = Vatm

V(g 7VX <- Gi) V V(g 7V2 <- G2) \ V(g JVj <- (JVX = JV2) A Gi A G2)

r;P hp [0](V(g TVj <- Gx) W(o N2 ^ G2))»q N By hypothesis
r;£> l-p [0](V(g iVj <- Gi))»g iV and [0](V(g iV2 «- G2))»g JV By inversion
T; P hp [0 ■ ai]Ni = N and T; P hp [0 • aJGi By inversion
T; P hp [0 • a2]N2 = N and T; P hp [0 • <r2]G2 By inversion
T; P hp [0 • a{\Ni - [0 ■ a2]N2 By replacement

T; V\-p[0-<Ji- cr2]Ni = [B-ai- a2]N2 A [B ■ ax ■ a2]d A [6 ■ ay ■ a2]G2

By composition of ground substitution
T;P l-p [B](V(q Nr <- ($ = 7V2) A Gx A G2))»q N By rule

Case: 7r ends in VAtA, VAtV, VA, VV: by an immediate appeal to the IH.

(<—): similarly. □

We remark that, using again terminating programs, the above Lemma covers immediate denial as well.
We now extend the effect of the above compilation on a program:

Definition 6.41

(T)
VD

 = T
(±)VD = j_

(V(Q^G))V° = V(Q<-(G)
VG

)
(PIAP2)

VD = (Pi)v°A(P2)
v°

(Pi V P2)
VD = D where {Dxy° V {D2)

v° \ D
{X)v° = X X€{T,±,Q, (dis)eq}

(GIAG2)
VG = (GI)

VG
 A(G2)

VG

(GIVG2)
V
° = (G0Vc V(G2)

Vc

(P -»■ G)v= = (P)v^ -> (G)
VG

(Vz:a.G)VG = Vx:a. (G)
VG

Theorem 6.42 (Elimination of V) For every ground substitution T h 0 : $

i. 5 :: T; P hp [0]G # (5)v) :: T; ([0]P)V* hp ([0]G)
VG

 ;

Ä. X:: r;Php [0]£>»Q iff (2)v :: -;([0]P)Vc hp ([0]P)Vc»Q.

Proof: (—>). By a straightforward mutual induction on the structure of the given derivations: we show the
crucial case.

Case: (J)v ends in »V:

T;P hp [8]Di»Q and T;P hp [B]D2»Q By sub-derivation
T; ([0]P)V° hp ([0]PI)

VD
 »Q and T; ([0]P)V° hp ([0]P2)

VD
 »<? By IH 2

T; ([0]P)V° hp ([0]PI)
VD

 V ([0]P2)
VD
»Q By rule »V

T; ([0]P)V° hp [0](Pj V P2)
VD

 »Q By Lemma 6.40

(<-)• Similarly. D

6.10. SUMMARY 140

The same remark w.r.t. termination applies.

We finish up this Chapter by completing our two running example, where in a final pass we have also:

• Renamed negative predicates with more suggestive names.

• Removed irrelevant occurrences of T.

• Hidden the irrelevant augmentation in the final negative clause.

• Brought clauses to the 'core' languages syntax, as in LF.

Example 6.43 Concluding Example 6.25 and 6.39 the final definition of -^closed is:

oplam

opapl

opapl

VE-.exp.open (lam E) 4- \/x:exp. open (E x).

V£q, E2:exp. open (app E\ E2) 4- open E\.

\/Ei,E2:exp.open (app E\ E2) 4- open E2.

where we have hidden the irrelevant assumption closed x in oplam and renamed '-^closed' into open.

Example 6.44 The final definition of -'linear and in turn -<linx is:

-ilinappl

-linappl

-ilinlaml

-ilinlam2

-ilinxapl

-<linxap2

^linxap3

-*linxap4:

-ilinxlm

ilinear(app F G) 4— ->linear(F).

-<linear(app FG)f- -*linear(G).

-^linear(lam Xx. E x) 4— -^linx(Xx .Ex).

ilinear(lam Xx .E x)

4- (Vy.exp. (-<linx(Xx.y) A linear(y)) -» -^linear(E y)).

-<linx(Xx. app (F x1) (G x1)).

^linx(Xx.app(F x°) (G xf).

ilinx(Xx.app (F x1) (G x0)) 4- -^linx(Xx.F x1).

-<linx(Xx.app (F x°) (G x1)) 4- ->linx(Xx.G x1).

-\linx(Xx. lam(Xy .Exy))4-

(Vy.exp. ->linx(Xx.y) -» -^linx(Xx.E x y)).

6.10 Summary

In this Chapter we have given a complement algorithm for a significant fragment of third order Hereditary
Harrop Formulae, by adapting the idea of elimination of negation introduced in [ST84] for Horn logic.
This has the neat effect that negation and its problems are eliminated, i.e. we avoid any extension to the
(meta) language. This has entailed finding a middle ground between the Closed World Assumption usually
associated with negation and the Open World Assumption typical of logical frameworks. Our solution is to
restrict the set of programs we deem deniable in a novel way, so as to enforce a Regular Word Assumption
(RWA): we define a class of programs whose dynamic assumptions extend the current database in a specific
regular way. Technically, this regularity under dynamic extension is calibrated so as to ensure that static
and dynamic clauses never overlap. This property extends to the negative program; in a sense, we maintain
a distinction between static and dynamic information, but at a much finer level, i.e. inside the definition
of a predicate. The resulting fragment is very rich, as it captures the essence of the usage of hypothetical
and parametric judgments in a logical framework; namely, that they are intrinsically combined to represent
scoping constructs in the object language.

Chapter 7

Conclusions and Future Work

The importance of higher-order logical frameworks and logic programming languages that depend on in-
tuitionistic logic, open-world assumptions (changing contexts), and lambda-abstractions is becoming more
apparent and their use more widespread. Recent research is attempting to increase their expressivity, while
preserving the conciseness and elegance of their representation techniques. The issue of negation has to be
appreciated in that context. A good understanding of negation in such settings will significantly enhance
the expressive strengths of such specification languages.

In this dissertation we have presented a solution to this long-standing issue in logical frameworks endowed
with a logic programming interpretation. The solution offered by our approach has the net (and neat) effect
that negation and its problems are eliminated, i.e. we avoid any extension to the (meta) language.

Although the transformational approach to negation has been investigated in traditional logic program-
ming, this is a novel approach to addressing negative information in the higher-order intuitionistic setting.
Many of the techniques from Horn programs do not carry over directly, so creative solutions had to be found
to adapt the idea to the higher-order setting. In particular, we had to:

1. Formulate a strict A-calculus to obtain closure under term complement of the source language.

2. Find a notion of negation normal forms which is compatible with the operational semantics required
by Hereditary Harrop Formulae (HHF).

3. Introduce the Regular World Assumption (RWA) as a way to reconcile the intrinsic tension between
the Closed World Assumption, associated with negation, and the Open World Assumption typical of
languages with embedded implication.

Elimination of negation is particularly tuned to logical frameworks: although the problems connected
with negation are analogous in logical frameworks and logic programming, the solution does not need to
be the same. In this sense our approach is not a panacea. For example, it is definitely non appropriate
in presence of even a small database of facts. Although the typing discipline goes a long way to limit
the combinatorial explosion of negative facts, often a different approach is more fruitful; consider a small
database recording the age of some people. It would be painful to negate say age k s34 (0) by inferring
non-age k 0... non-age k s33 (0), non-age k s35 (X). In this case the use of some form of constructive
negation is preferable, possibly in the form of disequations, i.e. non-age k Z <— Z ^ s34(0). This area, to
date, has not been explored at all in the higher-order case.

Before discussing how to extend our approach beyond some of the current limitations, we take on again
the main technical restriction1, i.e. to complementable programs as defined in Figure 6.7. As we have
argued, the key to a successful and implementable pairing of negation and hypothetical judgments is to keep
separate at any time static and dynamic information in a program. We have achieved this by requiring every
assumption to be parametric, a property which is preserved by the negative program. The eigenvariable
condition enforced by the operational semantics of HHF together with the rigidity restriction does the rest.

'We discuss the issue of local variables later, see Subsection 7.1.4.

7.1. LIFTING RESTRICTIONS 142

We have argued that this restriction is a most natural one w.r.t. the intended application; in our experience,
it covers the overwhelming majority of actual Twelf and AProlog code. This of course does not mean that
there are no useful programs which lie outside of this class; it is indeed entirely possible to use hypothetical
judgments in isolation from parametric ones. We have noted in Section 5.4 how sometimes this can be
avoided by resorting to a finer notion of context such as the one offered in linear logic. Otherwise, it is
always possible to eliminate the offending implications by introducing an explicit management of contexts.
For instance, we can revisit Example 5.1 and transform

impi : nd(A imp B) <- (nd(A) -> nd(B)).

into:

impi

impil

impi2

impi3

nd(A imp B) <- nd2(A, B).

nd2{A,A).

nd2(C,Aimp B) <- nd2{C,B).

nd2(C,A imp B) <- nd2(A,B).

Although this goes against the spirit of logical frameworks based on intuitionistic logic programming which
owes part of its success to the capability of representing object-logics contexts via the meta-level scoping
mechanism of embedded implication, this is not unheard of, and it is actually proposed (for different reasons)
in [MM97]. Besides, this transformation will of course be localized only to those predicates we need to
complement.

7.1 Lifting Restrictions

We now address some of the restrictions which can in fact be lifted; in doing so, we will consider an example
which is not currently treated:

Example 7.1 Consider the following extension of the copy clauses to a third and fourth order constructs,
respectively callcc and reset:

callcc

reset

cpcallcc

cpreset

{{exp —> exp) —> exp) —j- exp.

(((exp —» exp) —¥ exp) —> exp) —¥ exp

cp (callcc Xc:exp —> exp.E c) (callcc Xd:exp —)■ exp.F d)

<— (Vc: exp —> exp.

(Va;: exp. Vy: exp. cp (c x) (c y) <- cp x y)

-> cp (E c) (F c)).

cp (reset \f: (exp -> exp) —¥ exp. E f) (reset \g: (exp —> exp) —> exp. F g)

•f— (V/: (exp —> exp) -> exp.

(Vc,d:exp —> exp.

cp (f c) (f d))

<- (Va;,y.exp. cp x y —> cp (c x) (d y))

-> cp (E f) (F /))

7.1.1 Parameters Restrictions

The restriction to parameters of base type seems to be the less complicated to lift, if we still require them to
occur only in head position. We thus would redefine the class of Shallow Parameter Expressions (SPE) as:

SPE x \ A\Xx.ex\(ex M)k

7.1. LIFTING RESTRICTIONS 143

This will allow to complement the third-order cpcallcc clause:

c:exp -> exp h NotQ (Vx, y: exp. cp (c x) (c y) <— cp x y) =

V(->cp (c x) (lam E) A ->cp (c x) (app Ei E2) A

-icp (/am F) (c y) A -^cp (app Fi F2) (c y) A

-■cp (c x) (c j/) <— -icp x y).

The condition for parameter to occur at head position instead is orthogonal, since it is a sufficient
condition for maintaining non-overlapping between dynamic and static clauses; that is, of course, the main
technical idea behind the exclusivity proof. A clause can indeed be complementable, i.e. every assumption
is parametric, but if the eigenvariable does not occur in head position in the assumption, then the non-
overlapping requirement may not be immediately verifiable. If we can detect by static program analysis or
by any other means that no overlapping will result, then those clauses too can be promoted.

7.1.2 Extension to Any Order

We currently treat only the third-order case, that is we allow HHF which only make Horn assumptions.
In this way, generally speaking, judgments on goals are only trivially recursive with the ones on clauses,
since the latter would not make any new assumption. Allowing arbitrary assumptions requires instead this
recursion to be unbounded. In general, most of the times we simply need to modify those judgments by
passing around their contexts. To be concrete, let us consider for instance the issue of schema extraction;
in the n-ary case, schemata ought to be hereditarely closed. In fact, if a HHF belongs to a schema, the
latter ought to take into account any further assumption that the former may yield. The aforementioned
modifications of the extraction judgments in Figure 6.5 will do the trick:

Y\V\-G^Si Y;V\~D=^S2 p

r;ph(G ->i>)=^Si||S2

r; (V A D) I- G =i> Si T;V\- D=^S2
G,

Y;V \- D-* G =^> Si\\S2

For example we can extract the following schema from the extended definition of cp:

def(cp) ==> x : exp; cp x x\\

c : exp -> exp; (Vx,y:exp. cp x y —> cp (c x) (c y))\\

f : (exp —> exp) —> exp; (Vc, d:exp -> exp. cp (f c) (/ d) <—

(Vx, y: exp. cp x y —» cp (c x) (c y)))

In this case only the schema alternative induced by the cpreset clause needs to be hereditarely closed with
x:exp;cp x x; but this is already provided by the (schema extracted from the) cplam clause.

Similar changes apply to the other judgments; in particular, augmentation is generalized, so that goals
which can make dynamic assumptions will be recursively augmented as well. Formally:

r; V h augD(D) = Da T; (VAD)\- augc(G) = Ga

 augG —>
T;Vh augG(D ->• G) = Da -> Ga

We can therefore complement a fourth-order clause such as cpreset, where, for the sake of readability, we
have not expanded the calls to NotQ(.D):

-^cpreset : ^cp (reset Xf: (exp -> exp) -> exp. E f) (reset Xg: (exp -> exp) ->• exp. F g)

7.2. EXTENSIONS 146

7.2.2 Richer Type Theories

The approach we have chosen is tailored to satisfy the requirements of more complex logical frameworks
than L\; thus, we now mark some observations on how elimination of negation can be extended to those
type theories.

Polymorphism

Different degrees (in the A-cube) of polymorphism have been advocated as a feature in logical frameworks.
Of course, the more expressive the type theory, the more complicated its meta-theory. Pfenning has given an
algorithm for patterns unification and generalization in the Calculus of Constructions [Pfe91b]. Even if we
stick to the fully applied case, term complementation may be fairly difficult to achieve in general. Languages
such as AProlog instead offer the more manageable prenex (ML-like) polymorphism. In this case, a version
of term complementation able to deal with polymorphic constructors, such as a polymorphic cons, should be
feasible. In many ways, the problems are analogous to negation in presence of predicate quantification (see
next entry 7.2.3), namely the tension between a static operation such as complementation and the possible
instantiations offered by polymorphism.

Dependent Types

Almost all the design decisions we have taken while addressing the issue of negation in a logical framework
have been motivated by the ease to extend the latter to a framework such as LF/ Twelf. The very idea
to allow negation by elimination owes to the requirment to preserve the adequacy of the extraordinary
representation power of dependent types, while at the same time avoiding to interfere with the underlying
logic programming engine, which makes Twelf a unique unified meta-language for the theory and meta-
theory of deductive systems. While we fall short in this dissertation to addressing dependent types directly,
we believe that the machinery we have developed is robust enough for this extension. One novel problem
that we can already foresee is related to the interaction between term complementation and empty types.
In the simply-typed fragment we can assume every type to be inhabited, but this property is obviously
undecidable in the more powerful setting. This turns out to be problematic when complementing variables;
at first sight, it not clear what the complement of T h Not(I? x^) : a M would be, where the latter may be
empty. One possibility is to restrict variable complementation at type a M, perhaps such that M has no
internal structure at all, i.e. it is empty or just a term variable; this would cover all the examples in this
dissertation. Another one could be 'approximating' complementation in the simply-typed fragment and then
sift out the resulting complement set, in view of dependencies.

7.2.3 Predicate Quantification

In the logic programming community the term 'higher-order' is usually identified with the possibility of quan-
tifying on predicates, in the effort to simulate the first-class functions capability of functional programming
languages. This is a sometimes a source of misunderstandings (let me mention Hüog [CKW93] which has a
higher-order syntax and allows arbitrary terms to appear in places where predicates, functions and atomic
formulas occur in predicate calculus, but whose semantics is strictly first-order) and it may be overrated,
at least as far as logical frameworks are concerned, as the success of frameworks such as those based on
LF testify. Nevertheless, this is a useful, though not essential, feature and has been utilized for example in
implementation of proof-carrying code with AProlog [AF99]. Although we have not investigated the issue in
depth, it seems that clause complementation can be sometimes applied in this extended sense. For instance,
let some be a predicate of type (nat —> o) —> natlist —> o, which selects the first element in a list of numbers
for which a given predicate P : nat —» o holds:

shd : some (Xx:nat.P x) (cons Y Ys)

<- (P Y).

stl : some (Xx:nat.P x) (cons Y Ys)

<- some (Xx:nat.P x) Ys.

7.3. IMPLEMENTATION ISSUES 147

The application of our algorithm would yield:

->snil : -isome (Xx-.nat.P x) nil

-<stl : -isome (Xxinat.P x) (cons Y Ys)

<- NotG(f Y) A-.some (Xx:nat.P x) Ys.

Since we cannot foresee the structure of the goal (P Y) at compile-time, we delay the computation of
Notc{P Y) until the instantiation is known. Of course, we cannot allow unrestricted instantiations, but-we
need to restrict P to conform to the possible context schema. This will prevent goals such as some (Xx :
nat. ->euen(x) -> even(s(s(x))) (cons 0 nil), which will destroy exclusivity.

Of course, the above example is too simple-minded in at least one respect; we did not consider term
complementation on terms with some internal logical structure. The only reason the some predicate was
complementable is because the predicate occurring inside a term is simply a variable, making term comple-
ment trivial. In the general case, clause heads can contain arbitrary complex terms of type o. The approach
we have developed so far does not seem to capture those phenomena except in the simplest form.

7.3 Implementation Issues

A strict logical framework can be directly implemented with very minor adaptations of well-known techniques
used for its linear cousins such as Lolli [Hod94, CHP97] and LLF [Cer96]. Although we argue that strictness
is a useful and ubiquitous concept which deserves to be offered as a primitive notion in a logical framework,
this is not the only choice.

In fact, Girard would be quick to point out that it is not necessary to take strictness as a primitive at all,
since linear logic is flexible enough to express the notion of 'must occur' already. Indeed, strict implication
can be embedded into linear logic by simply defining A -4 B as A-oA ->■ B. This is of course true, but notice
that while this translation will indeed retain provability, it not faithful to the structure of proofs. Since in
a logical framework such as LF we are also concerned with the structure of terms, this embedding is not
adequate. For example, the strict term Ax1, ex1 x1 corresponds to both Xx9Xyu.cx9 yu and Xx9Xyu.cyu x9,
where the (_)9 notation refers to linear abstraction and application. Even if we are just considering proof
search (and not proof-terms) there are too many distinct derivations of A -oA -> B when compared to
A ->• B. So when we take a theorem in strict logic, embed it, and run a logical frameworksuch as LLF, we
incur into a fair amount of additional non-determinism. On the other hand, the strict A-calculus captures
exactly the right properties in an elegant way and can be developed from first principles. In summary, the
linear A-calculus here does not apply; even though it is clearly possible to compile strict functions to linear
ones, this compilation preserves only truth, but not the structure of proofs.

Moreover, as far as negation is concerned, we can safely remain in an intuitionistic setting. The drawback
is that we have to decorate source programs whose clause heads (hereditarely) contain partially applied terms
with appropriate occurrences of the vacuous predicate we have mentioned in Section 2.5. The latter, under
negation, is transformed in the strict one. Strict unification does not need to be considered, since every
term remains in the fully-applied fragment.

For example, if we are encoding a term say rAx. e"1 with the side condition that x g FV(e), we usually
represent e with a pattern variable E, which does not depend on x. For example, reconsider clause linxapl:

linxapl : linx(Xx.app (E\ x) E2) 4- linx(Xx.E\ x).

The latter may be rewritten as:

linxapl' : linx(Xx . app (E\ x) (E2 x)) <- vacuous(Xx. E2 x) A linx(Xx. E\ x).

where vacuos(Xx.E2 x) enforces that x does not occur in E2 x. The negation transformation will con-
vert those annotations in (pre-compiled) strict ones. Pursuing further this example, the complement of
linxapl' will include:

NotY)(Hnxapl) : ->linx(Xx.app (E\ x) (E2 x)) <- strict(Xx.E2 x) V -<linx(Xx.E\ x).

7.4. ADDITIONAL TOPICS 148

This kind of decoration of programs is a relatively small price to pay compared to the hassle of imple-
menting a strict calculus, only for the purpose of allowing full clause complementation; consider for example
the lack so far of a crucial ingredient such as the type reconstruction algorithm (although one for a related
calculus is presented in Wright's dissertation [Wri92]). Moreover, for every signature, the definition of the
predicate vacuous is completely trivial, while the one for strict is type-directed and may be automatically
inferred, in the style of Miller's copy clause [Mil89b]. On the other hand, this approach is less workable
when lifting the restriction to ground goals; in the presence of open queries, in fact, those annotations would
induce an undesirable 'generate-and-test' operational semantics: for example, the vacuous predicate would
generate vacuous terms to be then checked for, in this case, linearity. It may be possible to internalize the
strictness annotations as boolean constraints [HP97], in analogy to the linear case; if so, that would work
very well with logical frameworks such as Twelf(X) [Vir99], which have a declarative notion of constraints.

7.4 Additional Topics

7.4.1 Higher-Order Program Algebra

Several authors have investigated the algebra of logic programs to address modularity and meta-level issues
[0'K85, MP88, SW92]. In particular in [MPRT90a] the authors describe a program algebra for Horn clauses
without local variables under clause complement, set union and intersection. Since they interpret negation
as finite failure, exhaustivity does not hold. In fact, what they call a "constructive version of a boolean
algebra" is exactly what Rasiowa [BR57] calls "quasi pseudo Boolean algebras", that is distributive lattices
which satisfy the axioms of strong negation restricted to Horn logic.

We can extend the idea of a logic program algebra to a significant fragment of (third-order) HHF. In our
case we take equality (~) as operational equivalence under appropriate run-time contexts [Har92]; for every
program V\, V2 (seen as conjunction of predicate definitions) which satisfy a common context schema <S, for
every run-time context T; I> < <S and for every ground G:

V^-Vz iff (T;V\-VlGiST;V\-V2G)

Then we can organize the set of (finite) programs into a boolean algebra under union 'A' (lub), intersection
'V (gib), complement 'Noto', empty program 'T' (zero) and universal program '±' (one). Corollary 6.34
confirms that negation is boolean. Moreover, the rules for NotcNoto have been engineered to respect De
Morgan's laws.

It could be interesting to study the applicability of those ideas to modularity of higher-order logic pro-
grams, in particular to the modular construction of knowledge-based systems; for example a user could
collect in a module V\ all the positive knowledge about a predicate and in another, say V2, all the negative
ones (that is, the cases where the predicate does not hold). This is useful when dealing with defaults and
exceptions. The system would be able to compose those modules via boolean manipulations.

7.4.2 Strict and Vacuous Variables

It is our contention that the strict A-calculus we have introduced to formulate term complementation has
an independent interest in the investigation of sub-structural logics. Not only our types system is simpler
and (we claim) more elegant than the ones presented in the literature (reviewed in Section 3.3), but the
introduction of the notion of vacuous variables can be useful in a variety of contexts, beyond strictness
analysis. In fact, Pfenning [PfeOOb] has suggested some unexpected usage of those variables in type theory;
in particular, if we equip a linear A-calculus with vacuous variables, this will permit more programs under
type assignment. For example consider the function Xx .Xy .x® (Xw .y) x, which is traditionally considered
not linear, since x appears twice; nevertheless, the second occurrence is vacuous since it is the argument of a
constant function. By accounting for the latter, we can give it the linear type A -oB -o(A® B). This carries
over to the study of explicit substitutions [ACCL91] in resource-conscious A-calculi: for example, in [GPR98]
and refined in [CdPR99], the authors propose a system of explicit substitutions for intuitionistic linear logic
over unit, lollipop, tensor and bang, where variables can either be linear or intuitionistic. The calculus is not
optimal for several reasons, to start with the need for commutative conversions. One technical issue which

7.4. ADDITIONAL TOPICS 149

could be improved is the substitution "extension operator" which accounts for term to be substituted and
comes in three flavors: intuitionistic, linear and 'used' linear, to mark a term which has already been linearly
substituted. More in general vacuous (or hidden) variables go together with the modality of hidden types,
M : [A], " M is a past term of type A" [DPar], which as the adjoint operation of the traditional 54 necessity
operator, is a promising tool in the study of staged computation [DPar] and computational irrelevance. We
plan to develop such a calculus and verify its usefulness in those areas.

Bibliography

[AAB92] J. M. Dunn A. Anderson and N.D. Belnap. Entailment. The Logic of Relevance and Necessity,
volume 2. Princeton University Press, 1992.

[AAB+95] Johan Andersson, Stefan Andersson, Kent Boortz, Mats Carlsson, Hans Nilsson, Thomas
Sjöland, and Johan Widen. SICStus prolog user's manual. Technical Report T93-01, Swedish
Institute of Computer Science, 1995.

[AB75] A. Anderson and N.D. Belnap. Entailment. The Logic of Relevance and Necessity, volume 1.
Princeton University Press, 1975.

[AB90] Krzysztof R. Apt and Marc Bezem. Acyclic programs. In Peter Warren, David H.D.; Szerdei,
editor, Proceedings of the 7th International Conference on Logic Programming (ICLP '90), pages
617-633, Jerusalem, June 1990. MIT Press.

[AB94] K. Apt and R. Bol. Logic programming and negation. Journal of Logic Programming, 19/20:9-
72, May/July 1994.

[ABT90] D. Pedreschi A. Brogi, P. Mancarella and F. Turini. Universal quantification by case analysis.
In Proc. ECAI-90, pages 111-116, 1990.

[ABW88] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In Jack Minker,
editor, Foundations of Deductive Databases, chapter 2, pages 89-148. Morgan Kaufmann, 1988.

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. Journal of Functional
Programming, 1(4):375-416, 1991.

[Acz77] Peter Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, chapter
C.7, pages 739-782. North-Holland, Amsterdam, 1977.

[AF99] Andrew W. Appel and Amy P. Felty. Lightweight lemmas in lambda prolog. In Danny De
Schreye, editor, Proceedings of the International Conference on Logic Programming (ICLP'99),
pages 411-425, Las Cruces, New Mexico, December 1999. MIT Press.

[Apt90] Krzysztof R. Apt. Logic programming. In J. van Leewen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, chapter 10, pages 493-574. The
MIT Press, New York, N.Y., 1990.

[Bar80] H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland, 1980.

[BDLM00] Bugliesi, Delzanno, Liquori, and Martelli. Object calculi in linear logic. JLC: Journal of Logic
and Computation, 10, 2000.

[Bel74] N.D. Belnap. Functions which really depend on their argument. Manuscript, 1974.

[Bel93] N. D. Belnap. Life in the undistributed middle. In K. Dosen and P. Schroeder-Heister, editors,
Substructural Logics, pages 31-42. Oxford University Press, 1993.

BIBLIOGRAPHY 151

[BF93] Clement A. Baker-Finch. Relevance and contraction: A logical basis for strictness and sharing
analysis. Technical Report ISE RR 34/94, University of Canberra, 1993.

[BLLM94] P. Bruscoli, F. Levi, G. Levi, and M. C. Meo. Compilative constructive negation in constraint
logic programs. In Sophie Tison, editor, Proc. Trees in Algebra and Programming - CAAP'94,
19th International Colloquium, volume 787, pages 52-76. Springer, 1994.

[BM90] Anthony J. Bonner and L. Thorne McCarty. Adding negation-as-failure to intuitionistic logic
programming. In Saumya Hermenegildo Manuel Debray, editor, Proceedings of the 1990 North
American Conference on Logic Programming, pages 671-693, Austin, TX, October 1990. MIT
Press.

[BMPT87] R. Barbuti, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Intensional negation of logic
programs. In Proceedings ofTapsoft87, volume 259 of LNCS, pages 96-110, Austin, TX, October
1987. Springer Verlag Press.

[BMPT90] Roberto Barbuti, Paolo Mancarella, Dino Pedreschi, and Franco Turini. A transformational
approach to negation in logic programming. Journal of Logic Programming, 8:201-228, 1990.

[BMV89] A. J. Bonner, L. T. McCarty, and K. Vadaparty. Expressing Database Queries with Intuitionistic
Logic. In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, pages 831-850, Cleveland, Ohio, USA, 1989.

[B0I88] A. W. Bollen. Conditional Logic Programming. PhD thesis, Australian National University,
1988.

[Bol90] A. W. Bollen. Relevant logic programming. Journal of Automated Reasoning, 7(4):563-586,
December 1990.

[Bon91] A.J. Bonner. Hypothetical Reasoning in Deductive Databases. PhD thesis, Rutgers University,
October 1991.

[Bon94] A.J. Bonner. Hypothetical reasoning with intuitionistic logic. In R. Demolombe and T. Imielin-
ski, editors, Non-Standard Queries and Answers, volume 306 of Studies in Logic and Computa-
tion, pages 187-219. Oxford University Press, 1994.

[BR57] A. Bialynicki-Birula and H. Rasiowa. On the representation of quasi-boolean algebras. Bulletin
de L'academie Polonaise des Sciences, 5:259-261, 1957.

[CdPR99] Iliano Cervesato, Valeria de Paiva, and Eike Ritter. Explicit substitutions for linear logical
frameworks: Preliminary results. In A. Felty, editor, Proceedings of the Worskshop on Logical
Frameworks and Meta-Languages — LFM'99, Paris, France, 28 September 1999.

[Cer] Iliano Cervesato. Propositional linear logical framework. Manuscript.

[Cer96] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di Informatica, Uni-
versitä di Torino, February 1996.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amsterdam, 1958.

[Cha88] D. Chan. Constructive negation based on the completed databases. In R. A. Kowalski and K. A.
Bowen, editors, Proc. Fifth International Conference and Symposium on Logic Programming,
pages 111-125, Seattle, Washington, August 15-19 1988.

[Cha89] D. Chan. An Extension of Constructive Negation and its Application in Coroutining. In
Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the North American Conference
on Logic Programming, pages 477-496, Cleveland, Ohio, USA, 1989.

BIBLIOGRAPHY 152

[CHP97] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for
linear logic proof search. Theoretical Computer Science, 1997. To appear in a special issue on
Proof Search in Type-Theoretic Languages, D. Galmiche, editor.

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.

[Chu51] A. Church. The weak theory of implication. In Kontrolliertes. Karl Albert, 1951.

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187-230, February 1993.

[CL89] Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal of Sym-
bolic Computation, 7(3-4):371-425, March-April 1989.

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293-322. Plenum Press, New York, 1978.

[Col84] A. Colmerauer. Equations and Inequations on Finite and Infinite Trees. In Proceedings of
the International Conference on Fifth Generation Computer Systems (FGCS-84), pages 85-99,
Tokyo, Japan, November 1984. ICOT.

[Com88] H. Comon. Unification et disunification. Theories et applications. These de Doctorat
d'Universite, Institut Poly technique de Grenoble (France), 1988.

[Com91] H. Comon. Disunification: a survey. In J-L. Lassez and G.Plotkin, editors, Computational
Logic. MIT Press, Cambridge, MA, 1991.

[Com98] H. Comon. About proofs by consistency. Lecture Notes in Computer Science, 1379:136-??,
1998.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, editor, Proceed-
ings of the Eleventh Annual Symposium on Logic in Computer Science, pages 264-275, New
Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[dB80] N.G. de Bruijn. A survey of the project AUTOMATH. In J.P. Seldin and J.R. Hindley, editors,
To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pages 579-606.
Academic Press, 1980.

[dB91] N.G. de Bruijn. A plea for weaker frameworks. In G. Huet and G. Plotkin, editors, Logical
Frameworks, pages 40-67. Cambridge University Press, 1991.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gerard Huet, Chet Murthy, Catherine Parent, Chris-
tine Paulin-Mohring, and Benjamin Werner. The Coq proof assistant user's guide. Rapport
Techniques 154, INRIA, Rocquencourt, France, 1993. Version 5.8.

[DM97] Raymond Dowell and Dale Miller. A logic for reasoning with higher-order abstract syntax: An
extended abstract. In Glynn Winskel, editor, Proceedings of the Twelfth Annual Symposium on
Logic in Computer Science, pages 434-445, Warsaw, Poland, June 1997.

[DPar] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, To appear.

[DPS97] Joelle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for higher-
order abstract syntax. In R. Hindley, editor, Proceedings of the Third International Conference
on Typed Lambda Calculus and Applications (TLCA '97), pages 147-163, Nancy, France, April
1997. Springer-Verlag LNCS. An extended version is available as Technical Report CMU-CS-
96-172, Carnegie Mellon University.

BIBLIOGRAPHY 153

[Dun92] P. M. Dung. Declarative semantics of hypothetical logic programming with negation as failure.
In E. Lamma and P. Mello, editors, Proceedings of the Third International Workshop on Ex-
tensions of Logic Programming (ELP '92), volume 660 of LNAI, pages 45-58, Bologna, Italy,
February 1992. Springer Verlag.

[Eri92] Lars-Henrik Eriksson. A finitary version of the calculus of partial inductive definitions. In L.-H.
Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of the Second International
Workshop on Extensions of Logic Programming, pages 89-134, Stockholm, Sweden, January
1992. Springer-Verlag LNAI 596.

[Eri93] Lars-Henrik Eriksson. Finitary Partial Inductive Definitions and General Logic. PhD thesis,
Department of Computer and System Sciences, Royal Institute of Technology, Stockholm, 1993.

[Fag97] Francois Fages. Constructive negation by pruning. Journal of Logic Programming, 32(2):85—118,
August 1997.

[FBM93] G. Levi F. Bruscoli, F. Levi and M.C. Meo. Intensional negation in constraint logic program-
ming. In D. Sacca, editor, Proc. GULP93, pages 359-373, 1993.

[FRTW88] Norman Foo, Anand Rao, Andrew Taylor, and Adrian Walker. Deduced relevant types and
constructive negation. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings
of the Fifth International Conference and Symposium on Logic Programming, pages 126-139,
Seatle, 1988. ALP, IEEE, The MIT Press.

[Gab85] Dov M. Gabbay. N-Prolog: An extension of Prolog with hypothetical implications II. Logical
foundations and negation as failure. Journal of Logic Programming, 2(4):251-283, December
1985.

[Gab91] Dov Gabbay. Modal provability foundations for negation by failure, in extensions of logic pro-
gramming. In Peter Schroeder-Heister, editor, Extensions of Logic Programming: International
Workshop, Tübingen FRG, December 1989, volume 475 of Lecture Notes in Artificial Intelli-
gence, pages 179-222. Springer-Verlag, 1991.

[GdQ92] Dov M. Gabbay and Ruy J. G. B. de Queiroz. Extending the Curry-Howard interpretation
to linear, relevant and other resource logics. The Journal of Symbolic Logic, 57(4):1319-1365,
December 1992.

[GH78] J. Guttag and J. Horning. The algebraic specification of abstract data types. Ada Informatica,
10(l):27-52, 1978.

[GL90] Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation. In David
H.D. Szerdei Peter Warren, editor, Proceedings of the 7th International Conference on Logic
Programming (ICLP '90), pages 579-597, Jerusalem, June 1990. MIT Press.

[GMR92] L. Giordano, A. Martelli, and G. Rossi. Extending Horn clause logic with implication goals.
Theoretical Computer Science, 95(l):43-74, March 1992.

[G098] Laura Giordano and Nicola Olivetti. Negation as failure and embedded implication. Journal of
Logic Programming, 36(2):91-147, August 1998.

[GPR98] Neil Ghani, Valeria De Paiva, and Eike Ritter. Linear explicit subsitutions. Technical Report
CSR-98-2, University of Birmingham, School of Computer Science, March 1998.

[GR84] Dov M. Gabbay and U. Reyle. N-Prolog: An extension of Prolog with hypothetical implications
I. Journal of Logic Programming, l(4):319-355, December 1984.

[GR87] Jean H. Gallier and Stan Raatz. Hornlog: A graph-based interpreter for general Horn clauses.
Journal of Logic Programming, 4(2):119-155, June 1987.

BIBLIOGRAPHY 154

[GS86] Dov M. Gabbay and Marek J. Sergot. Negation as inconsistency I. Journal of Logic Program-
ming, 3(l):l-35, April 1986.

[Hal91] L. Hallnas. Partial inductive definitions. Theoretical Computer Science, 87(1):115-147, July
1991.

[Har89] J. Harland. A Kripke-like Model for Negation as Failure. In Ewing L. Lusk and Ross A.
Overbeek, editors, Proceedings of the North American Conference on Logic Programming, pages
626-644, Cleveland, Ohio, USA, 1989.

[Har91a] James Harland. A clausal form for the completion of logic programs. In Koichi Furukawa,
editor, Proceedings of the 8th International Conference on Logic Programming, pages 711-725.
MIT, June 1991.

[Har91b] James Harland. On Hereditary Harrop Formulae as a Basis for Logic Programming. PhD thesis,
Edinburgh, January 1991.

[Har92] James Harland. On normal forms and equivalence for logic programs. In Krzysztof Apt, editor,
Proceedings of the Joint International Conference and Symposium on Logic Programming, pages
146-160, Washington, USA, 1992. The MIT Press.

[Har93] James Harland. Success and failure for hereditary Harrop formulae. Journal of Logic Program-
ming, 17(l):l-29, October 1993.

[Hel77] G. Helmann. Completeness of the normal typed fragment of the A-system u. Journal of Philo-
sophical Logic, 1977.

[Hey56] A. Heyting. Intuitionism, an Introduction. North-Holland, Amsterdam, 3 edition, 1956.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143-184, January 1993.

[HM90] Joshua S. Hodas and Dale Miller. Representing objects in a logic programming language with
scoping constructs. In Peter Warren, David H.D.; Szerdei, editor, Proceedings of the 7th Inter-
national Conference on Logic Programming (ICLP '90), pages 511-528, Jerusalem, June 1990.
MIT Press.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computation, 110(2):327-365, 1994. A preliminary version appeared in the
Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, pages 32-42,
Amsterdam, The Netherlands, July 1991.

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory, Design, and Imple-
mentation. PhD thesis, University of Pennsylvania, Department of Computer and Information
Science, 1994.

[HP96] M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. In Proc. Seventh
International Conference on Rewriting Techniques and Applications (RTA '96), pages 138-152.
Springer LNCS 1103, 1996.

[HP97] J. Harland and D. Pym. Resource-distribution via Boolean constraints. In William McCune,
editor, Proceedings of the 14th International Conference on Automated deduction, volume 1249
of LNAI, pages 222-236, Berlin, July 13-17 1997. Springer.

[HSH90] L. Hallnas and P. Schroeder-Heister. A proof-theoretic approach to logic programming: Clauses
as rules. Journal of Logic and Computation, l(2):635-660, October 1990.

[HSH91]

.

L. Hallnas and P. Schroeder-Heister. A proof-theoretic approach to logic programming: Pro-
grams as definitions. Journal of Logic and Computation, l(5):261-283, October 1991.

BIBLIOGRAPHY 155

[Isa98] Isabelle. System home page, October 1998. Version 98-1.

[Jen91] Thomas P. Jensen. Strictness Analysis in Logical Form. In John Hughes, editor, Functional
Programming Languages and Computer Architectures, volume 523 of Lecture Notes in Computer
Science, pages 352-366, Harvard, Massachusetts, USA, 1991. Springer, Berlin.

[JLLM91] M.J. Maher J-L. Lassez and K. Marriot. Elimination of negation in term algebras. In A. Tarlecki,
editor, Mathematical Foundations of Computer Science, pages 1-16, Berlin, jul 1991. Springer-
Verlag.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science, pages 22-39. Springer-Verlag LNCS 247, 1987.

[KL87] Claude Kirchner and Pierre Lescanne. Solving disequations. In Proceedings, Symposium on
Logic in Computer Science, pages 347-352, Ithaca, New York, 22-25 June 1987. The Computer
Society of the IEEE.

[KNW93] Keehand Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing a notion of modules in
the logic programming language AProlog. In E. Lamma and P. Mello, editors, Proceedings of the
Third International Workshop on Extensions of Logic Programming, pages 359-393, Bologna,
Italy, February 1993. Springer-Verlag LNAI 660.

[Kre92] Per Kreuger. GCLA II. a definitional approach to control. Technical Report R92:09, SICS,
1992.

[Lia95] Chuck Liang. Object-Level Substitution, Unification and Generalization in Meta-Logic. PhD
thesis, University of Pennsylvania, August 1995.

[Lif99] Vladimir Lifschitz. Answer set planning. In D. De Schreye, editor, Proceedings of the Interna-
tional Conference on Logic Programming (ICLP'99), pages 23-35. MIT Press, 1999.

[Llo93] J. W. Lloyd. Foundations of Logic Programming, Second Extended Edition. Springer-Verlag,
1993.

[LM87] J.-L. Lassez and K. Marriot. Explicit representation of terms defined by counter examples.
Journal of Automated Reasoning, 3(3):301-318, September 1987.

[LMR92] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT
press, Cambridge, Massachusetts, 1992.

[LT84] J. W. Lloyd and R. W. Topor. Making PROLOG more expressive. LOGIC PROGRAM. (USA)
ISSN: 0743-1066, l(3):225-40, October 1984.

[Lug94] D. Lugiez. Higher-order disunification: Some decidable cases. In J.-P. Jouannaud, editor,
Proceedings of the First International Conference on Constraints in Computational Logics, pages
121-135, Munich, Germany, September 1994. Springer-Verlag LNCS 845.

[Lug95] D. Lugiez. Positive and negative results for higher-order disunification. Journal of Symbolic
Computation, 20(4):431-470, October 1995.

[Mah88] M. Maher. Complete Axiomatizations of the Algebras of finite, infinite and rational Trees. In
Proc. third Annual Symposium on Logic in Computer Science, pages 348-359. Computer Society
Press, July 1988.

[Mak87] Johann A. Makowsky. Why Horn formulas matter in computer science: Initial structures and
generic examples. Journal of Computer and System Sciences, 34:266-292, 1987.

[MAK91] L. Hallnass Martin Aronson, L-H. Eriksson and P. Kreuger. A survey of GCLA: a definitional
approach to logic programming. In Peter Schroeder-Heister, editor, Proceedings of the First
International Workshop on Extensions of Logic Programming, volume 1050 of 4^5, pages 19-
34, Berlin, March28-30 1991. Springer.

BIBLIOGRAPHY 156

[Mal71] A.I. Mal'cev. Complete axiomatixation of classes of locally free algebrae of varioud type. In
The metamathematics of algebraic systems: Collected papers, 1936-1967, pages 262-289. North-
Holland, 1971.

[McC88a] L. Thome McCarty. Clausal intuistionistic logic: I. Fixed point semantics. Journal of Logic
Programming, 5(1):1—31, March 1988.

[McC88b] L. Thorne McCarty. Clausal intuitionistic logic II. Tableau proof procedure. Journal of Logic
Programming, 5:93-132, 1988.

[Mil89a] Dale Miller. Lexical scoping as universal quantification. In G. Levi and M. Martelli, editors,
Proceedings of the Sixth International Conference on Logic Programming, pages 268-283, Lisbon,
Portugal, June 1989. MIT Press.

[Mil89b] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. In Peter Schroeder-Heister, editor, Proceedings of the International Workshop
on Extensions of Logic Programming, pages 253-281, Tübingen, Germany, 1989. Springer-Verlag
LNAI 475.

[Mil89c] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,
6(1-2):79-108, January 1989.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, l(4):497-536, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14:321-358,
1992.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 272-281, Paris, France, July 1994.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, April 1982.

[MM97] Raymond McDowell and Dale Miller. A logic for reasoning with higher-order abstract syntax:
An extended abstract. In Glynn Winskel, editor, Proceedings of the Twelfth Annual Symposium
on Logic in Computer Science, pages 434-445, Warsaw, Poland, June 1997.

[MMOO] Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and induction,.
Theoretical Computer Science, 231(231):91-119, 2000.

[MMP88] Paolo Mancarella, Simone Martini, and Dino Pedreschi. Complete logic Programs with domain-
closure Axiom. Journal of Logic Programming, 5:263-276, 1988.

[MN89] J. Maluszyhski and T. Näslund. Fail Substitutions for Negation as Failure. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the North American Conference on Logic Pro-
gramming, pages 461-476, Cleveland, Ohio, USA, 1989.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

[Mom92] Alberto Momigliano. Minimal negation and hereditary Harrop formulae. In Anil Nerode and
Mikhail Taitslin, editors, Proceedings of Logical Foundations of Computer Science (Tver '92),
volume 620 of LNCS, pages 326-335, Berlin, Germany, July 1992. Springer.

[MP88] Paolo Mancarella and Dino Pedreschi. An algebra of logic programs. In Robert A. Kowalski and
Kenneth A. Bowen, editors, Proceedings of the Fifth International Conference and Symposium
on Logic Programming, pages 1006-1023, Seattle, 1988. ALP, IEEE, The MIT Press.

BIBLIOGRAPHY 157

[MP91] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory in Elf. In
L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of the Second Inter-
national Workshop on Extensions of Logic Programming, pages 299-344, Stockholm, Sweden,
January 1991. Springer-Verlag LNAI 596.

[MP93] Spiro Michaylov and Frank Pfenning. Higher-order logic programming as constraint logic pro-
gramming. In Position Papers for the First Workshop on Principles and Practice of Constraint
Programming, pages 221-229, Newport, Rhode Island, April 1993. Brown University.

[MPRT90a] Paolo Mancarella, Dino Pedreschi, Marina Rondinelli, and Marco Tagliatti. Algebraic properties
of a class of logic programs. In Saumya Debray and Manuel Hermenegildo, editors, Proceedings
of the 1990 North American Conference on Logic Programming, pages 23-39, Austin, 1990.
ALP, MIT Press.

[MPRT90b] Paolo Mancarella, Dino Pedreschi, Marina Rondinelli, and Marco Tagliatti. Algebraic properties
of a class of logic programs. In Saumya Debray and Manuel Hermenegildo, editors, Proceedings
of the 1990 North American Conference on Logic Programming, pages 23-39, Austin, 1990.
ALP, MIT Press.

[Myc80] Alan Mycroft. The theory and practice of transforming call-by-need to call-by-value. In Pro-
ceedings of the 4th International Symposium on Programming, volume 83 of Lecture Notes in
Computer Science, pages 269-281. Springer Verlag, 1980.

[Nai86] Lee Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in Computer Science.
Springer Verlag, 1986.

[Nel49] D. Nelson. Constructive falsity. Journal of Symbolic Logic, pages 16-26, 1949.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 342-349, Amsterdam, The Netherlands, July 1991.

[Nip93] Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. In M. Bezem and
J.F. Groote, editors, Proceedings of the International Conference on Typed Lambda Calculi and
Applications, pages 306-317, Utrecht, The Netherlands, May 1993.

[NL92] Olivetti N. and Terracini L. N-Prolog and the equivalence of logic program. Journal of Logic
Language and Information, 5:253-3392, 1992.

[NL95] Gopalan Nadathur and Donald W. Loveland. Uniform proofs and disjunctive logic programming.
In D. Kozen, editor, Proceedings of the Tenth Annual Symposium on Logic in Computer Science,
pages 148-155, San Diego, California, June 1995. IEEE Computer Society Press. Available as
Technical Report CS-1994-40, Department of Computer Science, Duke University, December
1994.

[NM88] Gopalan Nadathur and Dale Miller. An overview of AProlog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programming Conference, pages 810-
827, Seattle, Washington, August 1988. MIT Press.

[0'K85] R. A. O'Keefe. Towards an algebra for constructing logic programs. In Proceedings of the Inter-
national Symposium on Logic Programming, pages 152-161. IEEE Computer Society, Technical
Committee on Computer Languages, The Computer Society Press, July 1985.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN '88 Symposium on Language Design and Implementation, pages 199-208, Atlanta,
Georgia, June 1988.

[Pea90] David Pearce. Reasoning with negative information, II: Hard negation, strong negation and
logic programs. In H. Pearce, D.; Wansing, editor, Proceedings of the International Workshop
on Nonclassical Logics and Information Processing, volume 619 of LNAI, pages 63-79, Berlin,
FRG, November 1990. Springer Verlag.

BIBLIOGRAPHY 158

[Pet81] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115-116, June 1981.

[Pfe89] Frank Pfenning. Elf: A language for logic definition and verified meta-programming. In Fourth
Annual Symposium on Logic in Computer Science, pages 313-322, Pacific Grove, California,
June 1989. IEEE Computer Society Press.

[Pfe91a] Frank Pfenning. Logic programming in the LF logical framework. In Gerard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

[Pfe91b]

>

Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sixth An-
nual IEEE Symposium on Logic in Computer Science, pages 74-85, Amsterdam, The Nether-
lands, July 1991.

[Pfe92] Frank Pfenning. Computation and deduction. Unpublished lecture notes, 277 pp. Revised May
1994, April 1996, May 1992.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers, editor, Informal
Proceedings of the Workshop on Types for Proofs and Programs, pages 285-299, Nijmegen, The
Netherlands, May 1993.

[PfeOOa] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning. Elsevier Science Publishers, 2000. In preparation.

[PfeOOb] Frank Pfenning. Reasoning about staged computation, Sept. 2000. Invited talk at the Workshop
on Semantics, Applications and Implementation of Program Generation (SAIG), Montreal,
Canada.

[PG86] David L. Poole and Randy Goebel. Gracefully adding negation and disjunction to Prolog. In
Ehud Shapiro, editor, Proceedings of the Third International Conference on Logic Programming,
Lecture Notes in Computer Science, pages 635-641, London, 1986. Springer-Verlag.

[Plo71] G. D. Plotkin. A further note on inductive generalization. In Machine Intelligence, volume 6,
pages 101-124. Edinburgh University Press, 1971.

[PM90] Remo Pareschi and Dale Miller. Extending definite clause grammars with scoping constructs. In
David H. D. Warren and Peter Szeredi, editors, Proceedings of Seventh International Conference
on Logic Programming, pages 373-389, Jerusalem, Israel, June 1990. MIT Press.

[Pym99] David J. Pym. On bunched predicate logic. In G. Longo, editor, Proceedings of the 14th Annual
Symposium on Logic in Computer Science (LICS'99), pages 183-192, Trento, Italy, July 1999.
IEEE Computer Society Press.

[Rei78] R. Reiter. On closed world databases. In Gallaire and Minker, editors, Logic and Databases,
pages 55-76. Plenum Press, New York, 1978.

[RL92] David W. Reed and Donald W. Loveland. A comparison of three Prolog extensions. Journal of
Logic Programming, 12(l-2):25-50, January 1992.

[Rob65] J. Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23-41, January 1965.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for higher-order
logic programs. In Hanne Riis Nielson, editor, Proceedings of the European Symposium on
Programming, pages 296-310, Linköping, Sweden, April 1996. Springer-Verlag LNCS 1058.

[SchOO] Carsten Schürmann. Automating the meta theory of deductive systems. PhD thesis, Carnegie
Mellon University, 2000.

BIBLIOGRAPHY 159

[SD94] Danny De Schreye and Stefaan Decorte. Termination of logic programs: the never-ending story.
The Journal of Logic Programming, 19 & 20:199-260, May 1994.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Proceedings of
the Eighth Annual IEEE Symposium on Logic in Computer Science, pages 222-232, Montreal,
Canada, June 1993.

[She85] John C. Shepherdson. Negation as failure II. The Journal of Logic Programming, 2(3):185-202,
Oktober 1985.

[She88] J. C. Shepherdson. Negation in logic progamming. In J. Minker, editor, Found, of Deductive
Databases and Logic Programming, page 19. Morgan Kaufmann, San Mateo, CA, 1988.

[She89] J. C. Shepherdson. A sound and complete semantics for a version of negation as failure. Theo-
retical Computer Science, 65(3):343—371, July 1989.

[Sny91] Wayne Snyder. A proof theory for general unification. Birkhauser, Boston, 1991.

[SP98] Carsten Schürmann and Frank Pfenning. Automated theorem proving in a simple meta-logic
for LF. In Claude Kirchner and Helene Kirchner, editors, Proceedings of the 15th International
Conference on Automated Deduction (CADE-15), pages 286-300, Lindau, Germany, July 1998.
Springer-Verlag LNCS 1421.

[ST84] T. Sato and H. Tamaki. Transformational logic program synthesis. In International Conference
on Fifth Generation Computer Systems, 1984.

[Stä92] R. F. Stärk. The Proof Theory of Logic Programs with Negation. PhD thesis, University of
Berne, Switzerland, 1992.

[Sti88] Mark E. Stickel. A Prolog Technology Theorem Prover: implementation by an extended Prolog
compiler. Journal of Automated Reasoning, 4:353-380, 1988.

[Stu95] Peter J. Stuckey. Negation and constraint logic programming. Information and Computation,
118(l):12-33, April 1995.

[SW92] D. T. Sannella and L. A. Wallen. A calculus for the construction of modular Prolog programs.
Journal of Logic Programming, 12(1-2):147-177, January 1992.

[Thi84] Jean Jacques Thiel. Stop losing sleep over incomplete data type specifications. In Ken Kennedy,
editor, Conference Record of the 11th Annual ACM Symposium on Principles of Programming
Languages, pages 76-82, Salt Lake City, UT, jan 1984. ACM Press.

[TMM89] Kuo Tsung-Min and Prateek Mishra. Strictness Analysis: A New Perspective Based on Type In-
ference. In FPCA '89, Functional Programming Languages and Computer Architecture, London,
UK, September 11-13, 1989. ACM Press, New York.

[TS84] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In Sten-Äke Tärnlund,
editor, Proceedings of the Second International Conference on Logic Programming, pages 127—
138, Uppsala, 1984.

[Vir99] Roberto Virga. Higher-Order Rewriting with Dependent Types. PhD thesis, Department of
Mathematical Sciences, Carnegie Mellon University, 1999.

[Wad90] P. Wadler. Is there a use for linear logic. Technical report, University of Glasgow, 1990.

[Wal87] M. Wallace. Negation by constraints: A sound and efficient implementation of negation in
deductive databases. In Proceedings of the Fifth International Conference and Symposium on
Logic Programming, pages 253-263, San Francisco, August - September 1987. IEEE, Computer
Society Press.

BIBLIOGRAPHY 160

[Wan93] Heinrich Wansing. The logic of information structures, volume 681 of Lecture Notes in Artificial
Intelligence and Lecture Notes in Computer Science. Springer-Verlag Inc., New York, NY, USA,
1993. Revision of the author's doctoral thesis (Fachbereich Philosophie und Sozialwissenschaften
I of the Free University of Berlin).

[WBF93] D. A. Wright and C. A. Baker-Finch. Usage analysis with natural reduction types. In Lecture
Notes in Computer Science, volume 724, pages 254-266, 1993.

[WM91] Larry Wos and William McCune. Automated theorem proving and logic programming: A
natural symbiosis. Journal of Logic Programming, 11(1):1—53, July 1991.

[Wri91] D. A. Wright. A new technique for strictness analysis. In TAPSOFT '91. Springer-Verlag, New
York, NY, 1991. Lecture Notes in Computer Science 494.

[Wri92] D. A. Wright. Reduction types and intensionality in the lambda-calculus. PhD thesis, University
of Tasmania, September 1992.

[Wri96] David A. Wright. Linear, strictness and usage logics. In Michael E. Houle and Peter Eades,
editors, Proceedings of Conference on Computing: The Australian Theory Symposium, pages
73-80, Townsville, January 29-30 1996. Australian Computer Science Communications.

